

Empfehlungen

der Bayerischen Expertenkommission

Anlagen zur 3. Sitzung am 18. September 2024

- Sitzungsprotokoll
- Sitzungspräsentation Prof. Dr. Robert Schlögl (Vorsitzender)
- Impulsvortrag Prof. Dr. Wim Leemans
- Impulsvortrag Dr. Antonia Schmalz
- Impulsvortrag Frau Heike Freund
- Ergebnisse der Abfrage zu kernfusionsrelevanten Kompetenzen bei den bayerischen Hochschulen

Expertenkommission Kernfusion Bayern 2024

Ergebnisprotokoll der 3. Sitzung am 18.09.2024, 10:30-15:00 Uhr

im Bayerischen Staatsministerium für Wissenschaft und Kunst, München

Tagesordnung: vgl. Anlage 1

Teilnehmende: vgl. Anlage 2

Sitzungsleitung: Prof. Dr. R. Schlögl

Anmerkungen: Zu TOP 3 wird auf die Foliensätze zu den Vorträgen verwiesen

(vgl. Anlage 3, Anlage 4, Anlage 5).

Zu TOP 4 wird auf den Foliensatz der Kommissionsleitung

verwiesen.

TOP 1 Begrüßung durch den Vorsitzenden und das Staatsministerium Wissenschaft und Kunst

TOP 2 Nachbereitung der zweiten Sitzung

Zu den Ergebnissen der zweiten Sitzung gab es zwei Anmerkungen:

- Anders als in der zweiten Sitzung angedacht wird sich die Gründung des Bavarian Fusion Clusters aufgrund des notwendigen zeitlichen Vorlaufs voraussichtlich nach 2025 verschieben.
- Zu den Priorisierungskriterien: Nicht langfristige, sondern langdauernde Forschung sollte als erstes begonnen werden.

TOP 3 Impulsvorträge

Keine Ergebnisse

TOP 4 Vorstellung der Ergebnisse des Industrieworkshops am 10.09.2024 mit anschließender Diskussion

Die Kommission bedankt sich für die Durchführung des nützlichen Workshops, dessen Ergebnisse in die Arbeit der Kommission einfließen werden.

TOP 5 Vorhandene Kompetenzen und Infrastrukturen in Bayern:

Die Kommission bedankt sich für die Durchführung der Umfrage bei der Geschäftsstelle. Die Ergebnisse zeigen folgendes Bild:

• Es existieren **Elemente einer Fusionsforschungslandschaft** in Bayern.

- Während die vorhandenen Kompetenzen und Infrastrukturen in München ein Zentrum bilden, ist die Forschungslandschaft insgesamt eher fragmentiert.
- In der Umfrage wurden auch viele Beiträge genannt, die keinen unmittelbaren Beitrag zur Fusionsforschung leisten.
- Mithilfe einer wirksamen Vernetzung sowohl von Projektförderung als auch einer Plattform für den Austausch aller relevanten Akteure ist der Aufbau einer bayerischen Fusionsindustrie möglich und sinnvoll.
- Beim Aufbau des bayerischen Fusionsökosystems ist die nationale und internationale Anschlussfähigkeit sicherzustellen.

TOP 6 Kompetenzausbau in Bayern

Die Kommission stimmt zu, in der Sitzung die Eckpunkte der Empfehlungen festzulegen. Die Geschäftsstelle soll auf dieser Basis im Nachgang der Sitzung einen Text erstellen, der im Umlaufverfahren abgestimmt und in der letzten Sitzung verabschiedet werden soll.

Die in der zweiten Sitzung festgelegten Auswahlkriterien sollen weiterhin für die Auswahl und Priorisierung der Themengebiete (Studiengänge, Lehrstühle, Nachwuchsgruppen) angewandt werden:

- Bedeutung für das Ziel der Errichtung eines Kernfusionskraftwerks
- Bedeutung der Themen auf der Zeitachse; lang dauernde Forschungsthemen zuerst beginnen
- Technologieoffenheit
- Internationale Anschlussfähigkeit

Für die Empfehlungen zu den Studiengängen stoßen folgende Anmerkungen auf Zustimmung:

- Es sollte ein Masterstudiengang "Fusionsenergie" mit einem Schwerpunkt auf Physik eingerichtet werden. Dieser sollte technologieoffen konzipiert sein, einen Praxisteil in der Industrie vorsehen und auch ingenieurwissenschaftliche Kompetenzen beinhalten. Die HAWs können insbesondere für die Ingenieurausbildung eine Rolle spielen.
- Darüber hinaus sollten Spezialisierungen "Kernchemie" und "Materialien unter extremen Bedingungen" in der Chemie und "Materialien unter extremen Bedingungen" in den Ingenieurswissenschaften eingeführt werden.
- Alle Studiengänge sind so zu gestalten, dass sie klare Berufsmöglichkeiten aufzeigen, um attraktiv für Studierende zu sein.
- Es sollten ein bayernweites Graduiertenkolleg für Masteranden und Promovenden aufgebaut werden, das den Austausch zwischen den verschiedenen Fachgebieten ermöglicht und fördert.

Die Kommission betont, dass die **Finanzierung des Fusionsökosystems dauerhaft** auskömmlich gesichert sein sollte – sowohl der Personalaufbau in den Universitäten als auch die Projektförderung. **Großgeräte** zur Testinfrastruktur müssen mit **zusätzlichen**

Ressourcen (vrstl. vom Bund) errichtet werden, und der Zugang für Industrie und Forschung sollte niederschwellig organsiert werden. Letzteres wäre eine sinnvolle Aufgabe für den Bavarian Fusion Cluster.

Die Kommission empfiehlt, dass ein zentraler **Standort** für Testinfrastruktur und Demonstration mit nuklearer Tüchtigkeit bis 2026 gefunden und entwickelt werden sollte. Der Standort sollte über eine Ausschreibung wettbewerblich gesucht werden.

Bei Einsatz der Ressourcen, die im Rahmen der Mission Kernfusion zur Verfügung gestellt werden, ist eine Beteiligung an Startups nicht möglich oder sinnvoll. Die Mittel für den Bavarian Fusion Cluster hingegen müssen in den zugesagten 100 Mio. Euro berücksichtigt werden.

Zum Thema **Professuren und Nachwuchsgruppen** einigt sich die Kommission auf folgende Eckpunkte:

- Das Verhältnis zwischen Professuren und Nachwuchsgruppen wird erst festgelegt, wenn eine Liste der empfohlenen Professuren vorliegt.
- Die Nachwuchsgruppen sollten alle einer Professur zugeordnet werden (nicht notwendigerweise einer neuen), auch eine Anbindung an die Industrie ist denkbar.
- Professuren und Nachwuchsgruppen werden über das von der Geschäftsstelle zu erstellende Textdokument im Umlauf abgestimmt. Dabei fließen die Vorschläge der Universitäten ein, die bisher vorliegen (TUM, LMU, Uni Augsburg) und die in den 6 Wochen nach der 3. Sitzung noch eingehen. Die Geschäftsstelle wird die Universitäten informieren, entsprechende Vorschläge in dieser Frist noch einreichen zu können.

Die Kommission unterstützt die Schwerpunktsetzung im vorliegenden Konzept der TUM. Sie merkt dabei jedoch folgendes an:

- Es ist empfehlenswert, im Rahmen der Mission Kernfusion eine Vermischung zwischen Kernfusion und Kernspaltung zu vermeiden. Daher wäre es besser, den Lehrstuhl "Angewandte Kerntechnologien" auf die Kernfusion zu fokussieren.
- Der Studiengang sollte stärker auf Kernfusion fokussiert werden und den Titel "Nuclear Fusion Technologies" oder "Fusion und neuartige Kerntechnologien" tragen (anstelle von "Nuclear Technology & Applications").
- Die Leitung des Bavarian Fusion Clusters (BFC) sollte nicht bei einer am Fusion Cluster beteiligten Institution angesiedelt sein. Daher ist der Bewerbung der TUM an dieser Stelle nicht zu folgen.

TOP 7 Bayarian Fusion Cluster

Die Kommission hält fest:

- Die primäre Aufgabe des Clusters (Vernetzung in Lehre und Forschung) wird ergänzt um "Wirtschaft": Vernetzung in Lehre, Forschung und Wirtschaft.
- Der Cluster benötigt eigene Projektmittel, um Verbundforschung zu unterstützen.
- Eine institutionelle Verankerung des Clusters ist wichtig, die Ausgestaltung sollte allerdings der Staatsregierung überlassen werden.

- Als erste Umsetzungsmaßnahme der Mission Kernfusion soll die Clusterleitung eingesetzt werden. Sie bildet den Kern der Vernetzung und wäre als Gast auch an allen Berufungsverfahren beteiligt.
- Der Cluster braucht eine professionelle wissenschaftliche Leitung (evtl. international). Die Clusterleitung ist verantwortlich für die Nutzung des Teststandorts nicht für das Geld. Bayern Innovativ könnte als Projektträger oder Auftragnehmer eine Rolle spielen.
- Der Cluster ist eigenständig gegenüber den zu Vernetzenden und kann entsprechend nicht bei den einzelnen Akteuren (z. B. IPP; TUM) angesiedelt sein.
- Die Clusterleitung sollte durch eine erfahrene Persönlichkeit aus dem Wissenschaftsmanagement mit industrieller Erfahrung besetzt werden.
- Die T\u00e4tigkeit muss verg\u00fctet sein (vergleichbar W3).
- Zur Besetzung der Clusterleitung wird eine Findungskommission unter Leitung von Jan Wörner eingerichtet.

TOP 8 Konferenz Status and Crossroads of Fusion

Die Kommission ist sich einig, dass eine Durchführung noch dieses Jahr (2024) unwahrscheinlich wird. Es wird die Möglichkeit diskutiert, die Konferenz im Huckepackverfahren zu bereits geplanten Konferenzen durchzuführen (z. B. mit Pro-Fusion im Januar in Greifswald oder eine Konferenz, die in Rostock Anfang nächstes Jahr geplant ist).

TOP 9 Weiteres Vorgehen

Ca. 14 Tage nach der 3. Kommissionssitzung startet die Terminabfrage für die nächste Sitzung. Die Sitzung wird vermutlich im November 2024 stattfinden. Zwischenzeitlich wird am Entwurf des Maßnahmenpapiers im Umlaufverfahren gearbeitet.

In der 4. Sitzung der Expertenkommission sollen

- die Empfehlungen verabschiedet,
- Maßnahmen priorisiert,
- ein Beschluss über eine evtl. Folgekommission zur Umsetzungsbegleitung gefasst

werden. Darüber hinaus steht weiterhin die Clusterleitung, die Konferenz und Verfahren, um die Wirksamkeit der Kommissionsarbeit zu evaluieren, auf der Tagesordnung.

Ziel: industriell realisierter Kraftwerkstyp

Allgemeine Herausforderungen:

- Multi-physics model der Fusion (Grundlagenausbildung in Kernphysik undchemie wesentlich)
- Schlüssiges Gesamtkonzept eines Fusionskraftwerkes (in beiden Technologiepfaden!) incl. "klassische Komponenten" modernisiert
- Tritiumbreeding
- Haltbarkeit 1. Wand / Diagnostik / Materialwiss. (ggf. Neutronenquelle)
- 10/20 Hz Laser, 10/20 Hz target injection & engagement
- Lieferkette industriell gefertigter Komponenten für Forschung und Technik
- "Digital Fusion": digital twin, Automatisierung, Robotik, Process control.....

Ziel: industriell realisierter Kraftwerkstyp

Wesentliche Erwartungen an ein bayrisches Fusions-ecosystem

- Geschwindigkeit der Umsetzung, Schnelligkeit vor Vollständigkeit
- Regulierungsfragen und outreach zentral bearbeiten
- Das IP Problem und Wettbewerbsfragen rechtssicher lösen und aufsetzen
- Testinfrastrukturen schaffen und den Zugang organisieren
- Kontrovers: eigene Neutronenquelle (ohne Test direkt Erfahrungen sammeln aus Laserfusion)
- Einen Standort für technologieoffene Testexperimente jetzt festlegen und entwickeln (Nutzung eines AKW Standortes, konkret Isar II prüfen und rasch definieren)

Wichtige Themen

- Target injection & tracking
- Automatisierung und Robotik
- Virtual Engineering
- Remote Operation
- Codes und Simulationen
- Laserentwicklung
- Produktionsprozesse komplexer
 Komponenten auf industrieller Skala

- Kerntechnik
- Kernchemie, Brennstoffe
- First Wall
- Diagnostik, Steuerung, Messung
- Materialentwicklung
- Grdl. physik. Prozesse
- Lehrstuhl Laserfusion
 - Nicht-Gleichgewichts-Thermodynamik

- Kompetenzaufbau akademisch und nicht-akademisch
- Allgemeine Kernphysik und Kernchemie als vertiefte Grundlage
- Hochfrequenztechnik
- Nanostrukturen / -materialien

- Lehre: Kernphysik
- Lehre: Hochenergiephysik
- Lehre: Kernchemie
- Lehre: Fusionsforschung
- Lehre: Materie-Licht WW unter extremen Bedingungen
- Lehre: Plasmawandwechselwirkungen
- Lehre: Moderner Kraftwerksbau

Ausbildung mit breiter Grundlage und belastbarem praktischem Wissen Absolventen schnell verfügbar machen, lernen mit der Forschung (in Unternehmen)

Laser Fusion

Principles, recent advances and opportunities

Bayerische Staatsregierung

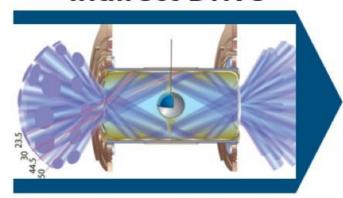
MISSION KERNFUSION

Many thanks to
Constantin Häfner
and Mike Campbell
for providing me
with great slides

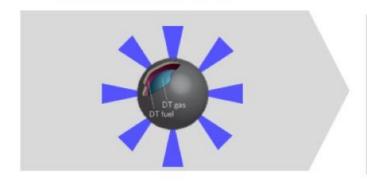
Impulsvortrag

18th September 2024

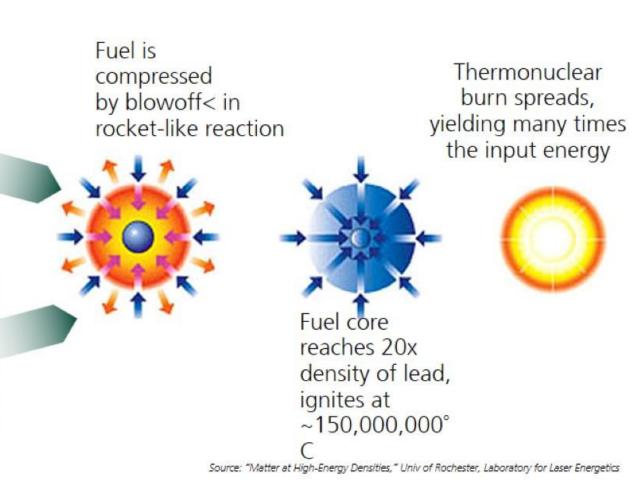
Munich, Germany


Prof. Dr. Wim Leemans

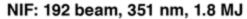
DESY and Universität Hamburg

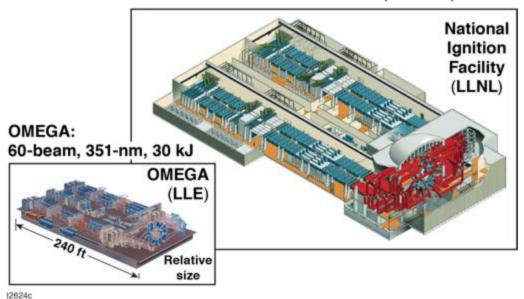

Inertial Confinement Fusion (ICF) can be achieved by using highpower lasers to drive a spherical implosion

Indirect Drive

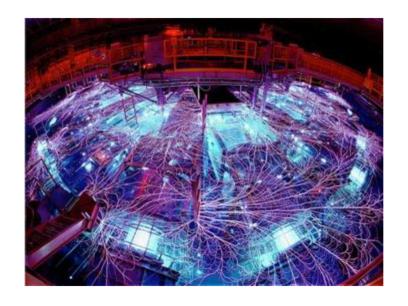


- Relaxed beam uniformity
- Reduced hydrodynamic instability


Direct Drive

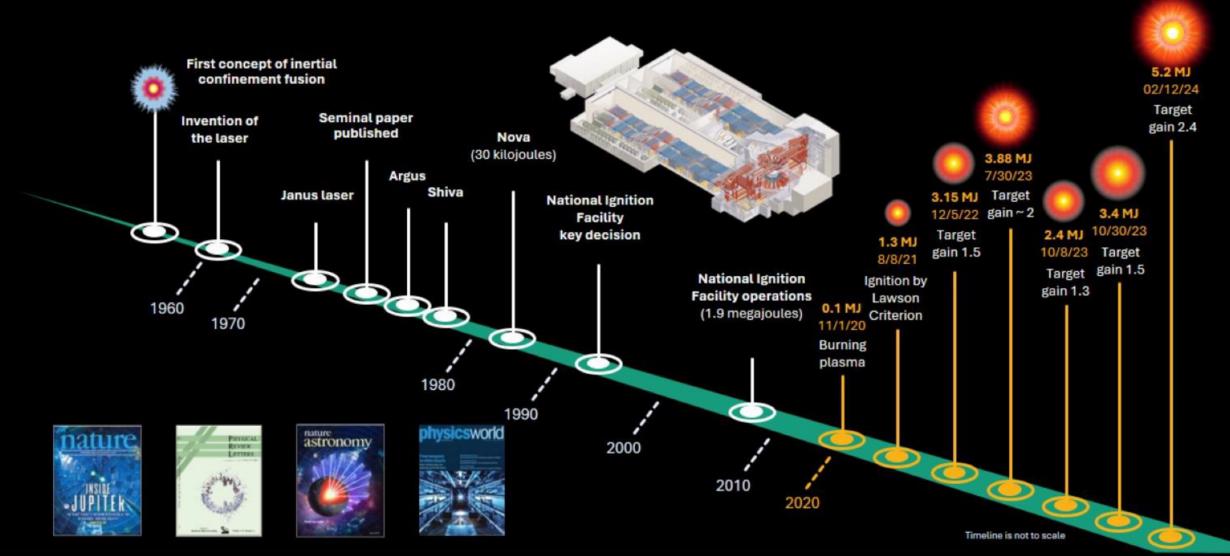


- Higher coupling efficiency
- Reduced laserplasma interaction effects


Sources that can "compress energy in space and time" are the drivers for ICF

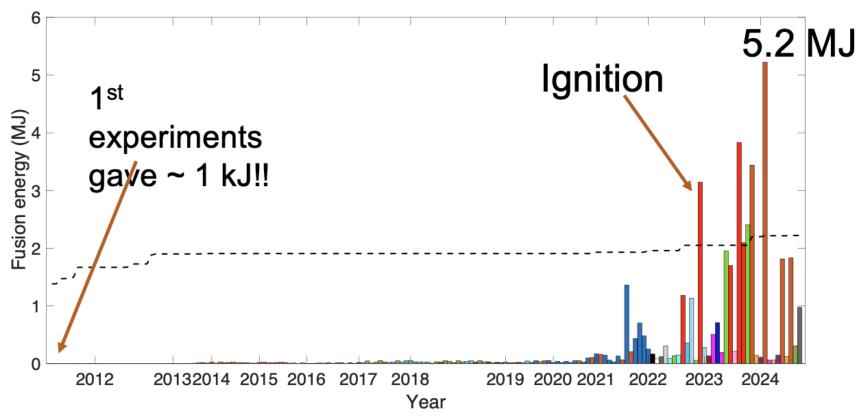
Lasers

- NIF (1.8 MJ, 500 TW) at Lawrence Livermore National Laboratory
- OMEGA (30 kJ, 30 TW) at LLE


Pulse Power

 Z (~2 MJ, 80 TW) at Sandia National Laboratories

Though less developed, Heavy Ion drivers are also potential IFE drivers



Ignition is the result of six decades of passion, hard work, and learning

Ignition demonstration is the start of a long road for ICF towards a power plant – a handful of shots have shown gain in past 2 yrs

- Indirect drive: Gain needs to be improved from 2.4 to 15 for break-even, and to >150 for power production, assuming laser wall plug efficiency goes from <1 % to 10-15 %
- Direct drive: physics needs to be understood, instabilities controlled and ignition needs to be demonstrated

Many challenges remain to be addressed for a power plant and will require long term investments

Final optics

- · Survivability, laser damage thresholds
- Novel high-volume production techniques
- High average power 3ω conversion

Target Injection

- 10 Hz at 50-200 m/s
- Tracking to lasers at <25 um

900 000 targets/day, <0.5 €/target

Gain needs to be increased from 2.4 to 15 for breakeven and to 150 for power plant

Can indirect drive work for a powerplant?

requires new laser generation: WPE ~ 10-20%

Laser Driver

- MTTR ~10Gshots
- Economical scale-up

target production Laser beamline (several 100) THG target **UV** optics injector neutron shieldina pump diodes System Engineering

Target Design and Fabrication

- High yield, high gain, survivable designs Scale up to ~1M targets/day
 - Production at ~\$0.25-0.50 each

Recycling and waste

e.g., ~ 2000 kg Pb/day

Removal from

and Plant Operations

- Obtain operational experience
 - System design and tradeoffs
 - · Balance of plant
 - Modularity and RAMI (includes remote handling)
 - Secure operations

Blanket and Chamber System

- Buffer gas / protection system
- Long lifetime radiation resistant materials
- Tritium breeding and heat transfer blankets
- Debris, ash and waste removal

Tritium fuel cycle and reprocessing

•~1 kg/day DT flowing through system

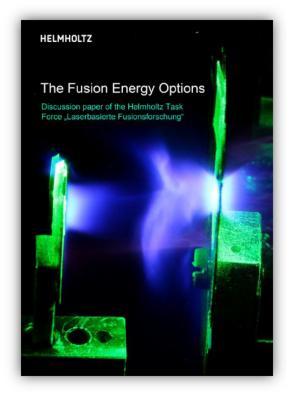
Materials constraints

Rapid development of a new fusion program in Germany

AG Laser members prepared the HA's working paper

Fusion/plasma-involved Helmholtz Centers have representation in the AG Laser

- Chair: Wim Leemans (DESY)
- Members:
 - Vincent Bagnoud (GSI)
 - Sibylle Günter (IPP)
 - Astrid Lambrecht (FZJ)
 - Ulrich Schramm (HZDR) and/or Tom Cowan (HZDR)
 - Robert Stieglitz (†, KIT)
 - Thomas Stoehlker (HI Jena / GSI)
- Support:
 - Ilja Bohnet (HA-Headquarters)
 - Jolie Egbert (HA-Headquarters)



Published a discussion paper: The Fusion Energy Options

Summary of findings and recommendations in the discussion paper

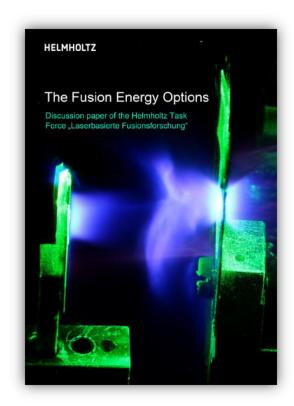
- Strengthen Germany's role in MFE:
 - Germany is a world leader in MFE
 - Resources required to proceed on the way to a German stellarator power plant are about €1 billion p.a.
- IFE and ICF still require long-term R&D
 - Limited expertise in Germany for historic reasons
 - Addressing key direct and indirect drive physics questions
 - Modeling tools for laser-plasma interaction physics and deployment of Almethods to expedite discovery.
 - Benchmarking experiments
 - Material research including shock-driven HED science experiments, as well as reactor wall relevant R&D, synergistic with MFE
 - Assessment of system engineering and design of large-scale facilities
 - Partnerships with industry

<u>Discussion_Paper_AG_Laser.pdf</u> (helmholtz.de)

Published a discussion paper: The Fusion Energy Options

Summary of findings and recommendations published in the discussion paper

Investments in research infrastructures and hubs/centres of excellence:

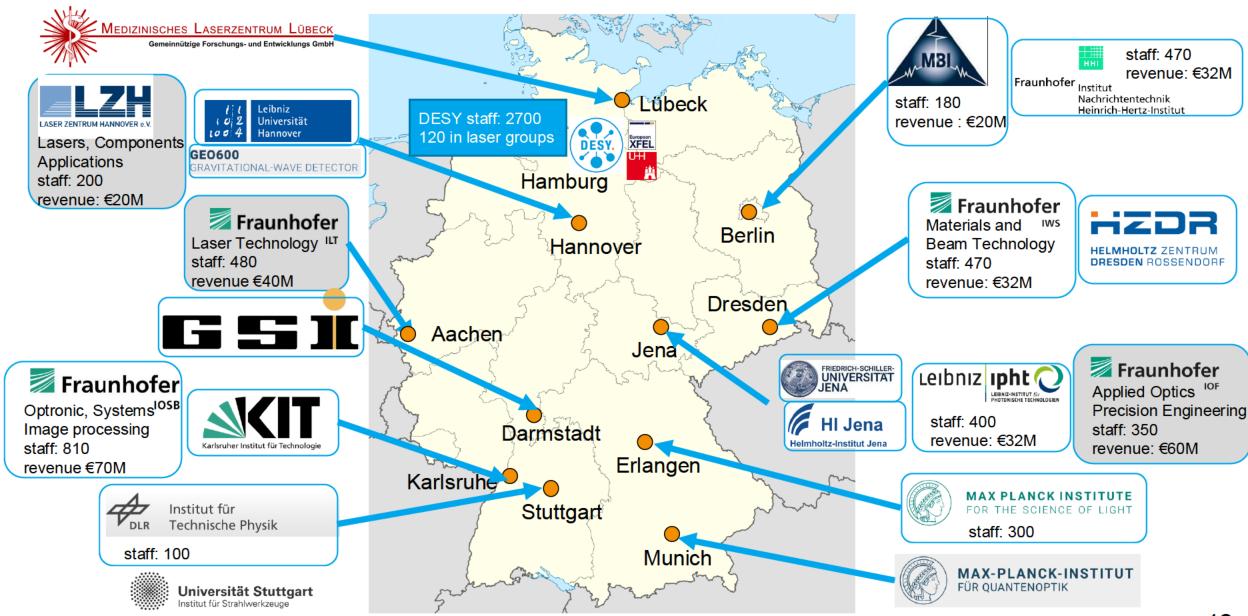

- Multi-kJ class high-energy laser for HIBEF at the European XFEL
- High-energy density science center

Joint R&D programs with industry and Fraunhofer:

- Develop laser technology in the direction of highly efficient laser systems with high repetition rates and megajoules
- With the aim of developing laser systems with an output of several tens of kW, high efficiency and reliable 24/7 operation

Investment in the education and training of young scientists and engineers

- (Re)establishment of a curriculum for plasma physics for both MCF and ICF
- Accompanied, e.g., by Helmholtz Young Investigator Groups, joint appointments with universities and the establishment of graduate schools as well as the promotion of international cooperation

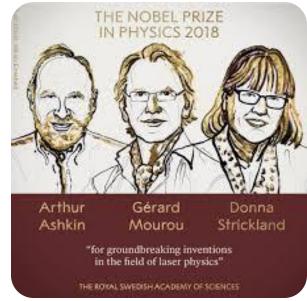


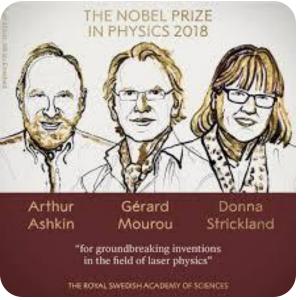
<u>Discussion_Paper_AG_Laser.pdf</u> (helmholtz.de)

Laser & Photonics are key technology for ICF and for large-scale research infrastructures in Germany

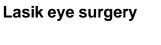
Key laser demands Helmholtz grand challenges Lasers for FELs More light with accelerator physics. Laser-driven particle Credit: KALDERA Novel Acc. sources **Laser-driven photon** sources Credit: Coherent **Photonic technologies** for next generation facilities and commercial systems

Laser & Photonics Landscape – Academic / Gov. Labs




The scientific and technical challenges of Fusion have led to many spin-offs; Germany has the right ecosystem to contribute

Investing will pay off



Precision machining

Physics of the universe in the laboratory

Compact accelerators

Strickland, Donna; Mourou, Gerard (1985) "Compression of amplified chirped optical pulses" Optics Communications. 56 (3): 219-221

Thank you

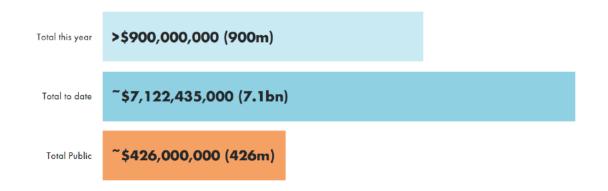
Contact

Prof. Dr. Wim Leemans Accelerator Division wim.leemans@desy.de

DESY. Deutsches Elektronen-Synchrotron

www.desy.de

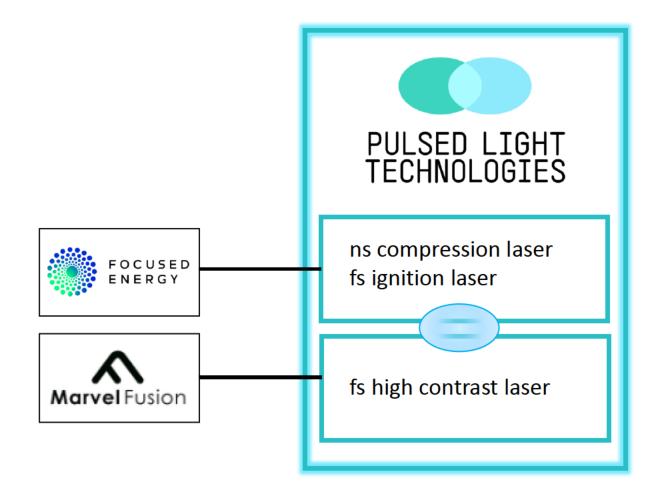
Bayerische Staatsregierung



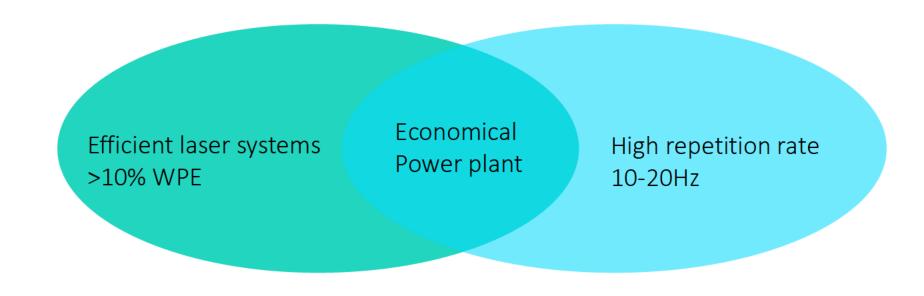
Antonia Schmalz Innovationsmanagerin SPRIND Geschäftsführerin Pulsed Light Technologies

HEIMAT FÜR RADIKALE NEUDENKER*INNEN

Fusion Industry Association Report 2024


General approach

- **23** Magnetic confinement
- 9 Inertial confinement
- **3** Hybrid magnetic/electrostatic confinement
- 6 Magneto-intertial
- 1 Muon-catalyzed fusion
- **3** Non-traditional concepts/Not stated

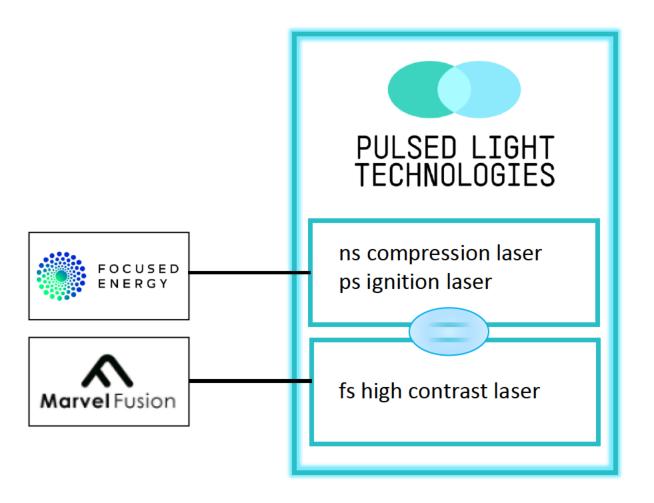

Specific approach

- **8** Stellarator
- 7 Laser-driven inertial confinement
- **3** Tokamak
- **3** Spherical tokamak
- **3** Field Reversed Configuration
- **2** Z-pinch
- Magnetized target fusion
- 1 Levitated Dipole
- Magnetic mirror
- 1 Centrifugal Magnetic Mirror
- 1 Magnetic-electrostatic confinement
- Magnetized Liner Inertial Fusion (MagLIF)
- 1 Muon-catalyzed fusion with high density fuel
- Open magnetic confinement (Mirror machine)
- 1 Magnetic electrostatic
- 1 Magnetic electrostatic
- Plectoneme
- Poloidal magnetic confinement
- Pulsed magneto-plasma pressurized confinement
- Shock-driven inertial confinement
- Short-Pulse Laser-Driven Inertial Confinement
- Spindle cusp
- Dense Plasma Focus
- 1 Electro-centripetal confinement
- Agnostic

LASER-DRIVEN FUSION POWER PLANTS

PULSED LIGHT TECHNOLOGIES

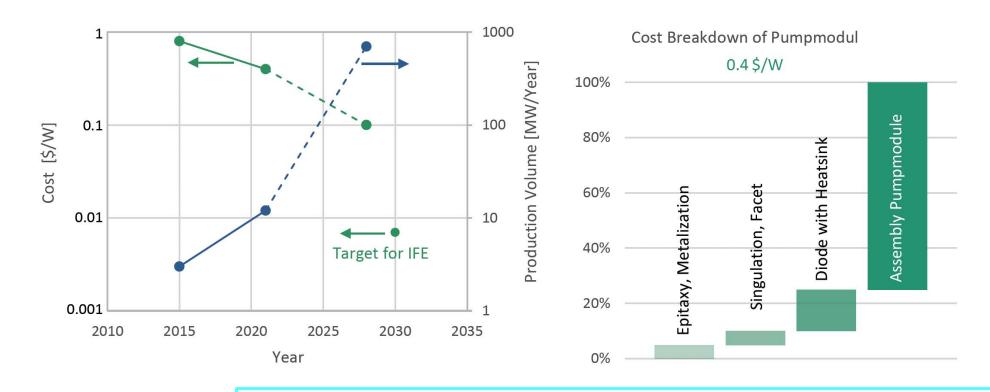
LASER-DRIVEN FUSION POWER PLANTS


Costs
Long MTTF
Maintenance

Efficient laser systems >10% WPE

Economical Power plant

High repetition rate 10-20Hz


Compactness

10 Hz, diodengepumpt – Effizienz 10%

> 200J, <100 fs 2 synchronisierte Systeme

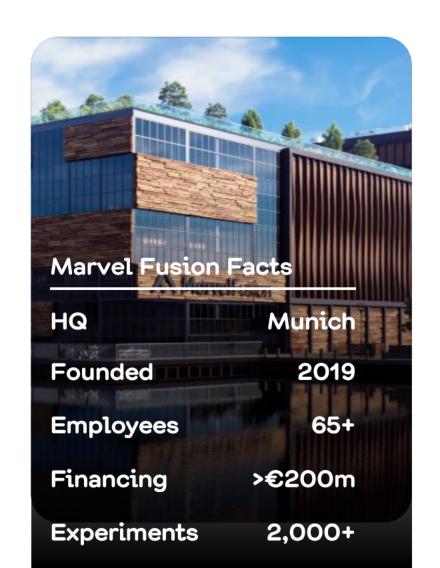
LASER DIODES

even with a price target of 0.007\$/W for packaged devices, the pump diodes account for approximately **one third of the estimated total laser costs** .

Source:

Status and Perspectives of High-Power Pump Diodes for Inertial Fusion Energy Lasers

A white paper prepared for the IFE Science & Technology Community Strategic Planning Workshop 2022, C. Häfner et al.


Mission Kernfusion – Expertenkommission 17. September, 2024

Heike Freund & Dr. Georg Korn

Energy for Humanity

Marvel Fusion is pursuing a novel laser-based fusion approach

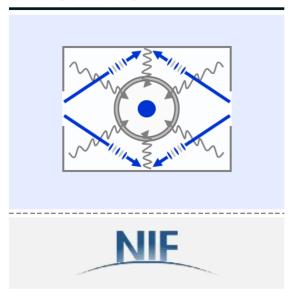
Breakthrough fusion technology enabled by latest laser and nanofabrication technology

1st class team with one mission: **fusion for humanity**

Partnerships with top **industrials** and **academia**

€60m raised, €150m in public-private partnerships

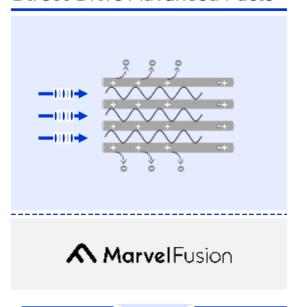
>2,000 experiments and pushing technological boundaries





In contrast to traditional laser-based inertial confinement approaches, Marvel Fusion's approach provides significant advantages

Indirect Drive


Direct Drive

Fast Ignition

Direct Drive Advanced Fuels

- Inefficient laser absorption
- Extreme compression required
- Challenging instabilities

- No x-ray conversion losses
- Extreme compression required
- Challenging instabilities

- No x-ray conversion losses
- Relaxed compression and less total energy required
- Challenging instabilities

- Efficient laser coupling
- compression
- Fast ignition
- Mixed fuels possible

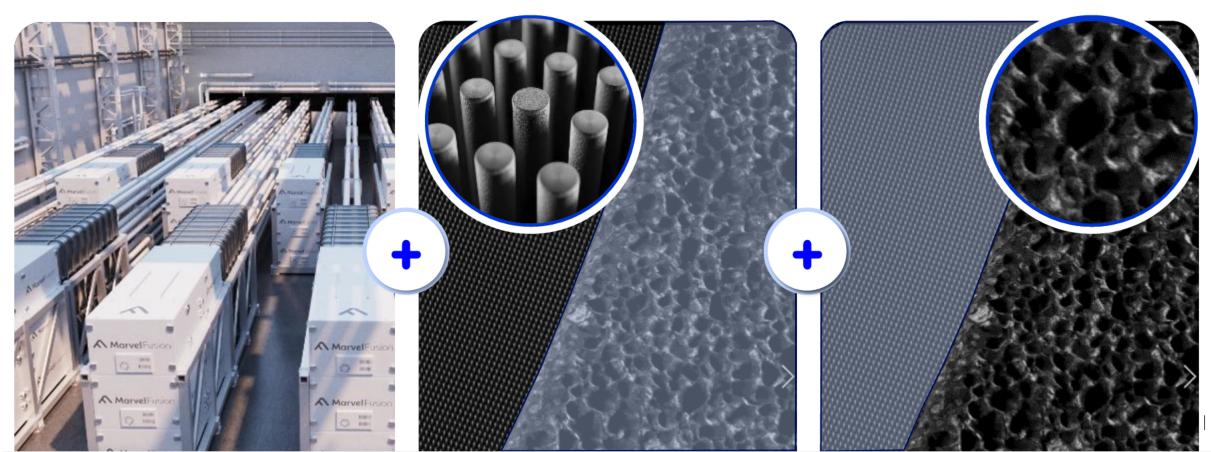
Marvel Fusion approach is based on three key innovations

Laser driver

Diode-pumped Laser SystemsEfficient direct diode pumped broad band

Efficient direct diode pumped broad band $(\delta \lambda/\lambda = 0.025, 100 fs)$ compact solid state lasers high repetition rates (10 Hz), $\eta > = 0.1$

The Spark enabler


Nanostructured Accelerators

High coupling of laser energy to fast ions, ultra-fast energy deposition, no instabilities

"Mixed" Fuel

Solid, Non-Cryogenic Fuel

Solid at room temperature, no cryogenic technology, chemically bound,

Laser design 20x more efficient and 10x more compact than peers

Cutting-edge industrial laser platform ...

... moves fusion lasers into commercially viable regime with 24/7 operation and compact systems

∧ MarvelFusion		eli beamlines
10 Hz	Repetition rate enabled by cooling technology	<0.01 Hz
>10 %	Energy efficiency through diode-pumping	<0.1 %
~40 m ³ Occupied volume	Compactness achieved with industrial design	~400 m³ Occupied volume

Roadmap towards a fusion power plant

Existing Facilities

1x scientific laser

Demonstration of fusion physics

2019-Today

Technical Proof-Of-Concept

2x industrial lasers

Demonstration of technology

2026+

Prototype

100's industrial lasers

Integrated engineering and system design (100 MW)

2032+

Commercial Plant

100's industrial lasers

Cost-effective and reliable baseload power (300-800 MW)

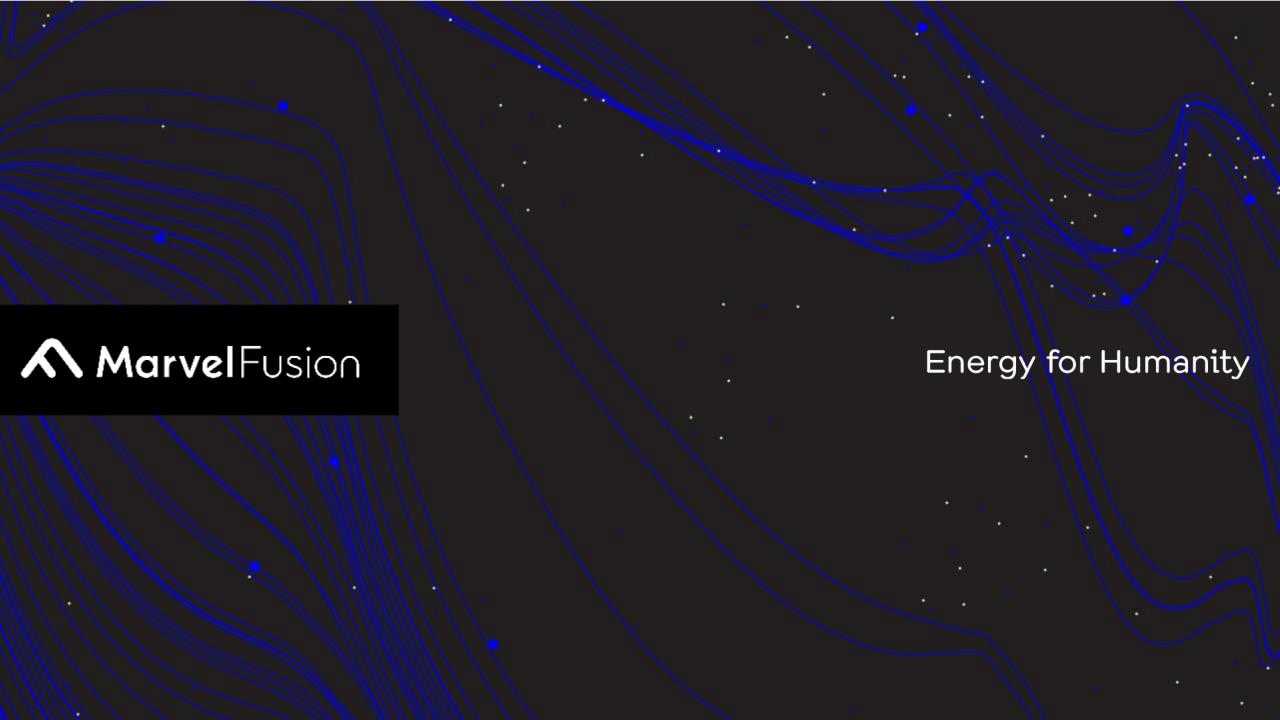
2035+

Dedicated IFE laser facility should be embedded into an ecosystem of fusion research and industry: The Bavarian Fusion Cluster

Short-term

Development of 1-10 Hz repetition rate capable diagnostics for advanced statistics and ML

Upgrade **CALA to 3PW** and increase automation for unique IFE experiments in Bavaria


Develop **IFE research base** through establishing new fusion chairs at universities (e.g. fusion physics, high power laser science, fusion engineering)

Mid-term

Upgrade University of Würzburg to become leading targetry and fusion fuel lab

Upgrade to 10-12PW with 2 beams positions CALA (Bavaria) as a leading laser fusion research platform in Europe

Construction of scaling laser facility and/or prototype in Bavaria

DISCLAIMER

This confidential presentation is intended as an initial guide only and does not purport to contain all information the recipient may require in an investigation of Marvel Fusion GmbH ("Company") or an investment in, or any other transaction relating to, the Company. The information contained in this presentation are provided as at the date of this document. Neither the Company nor any of its affiliates, officers, directors, members of management, employees, advisors or representatives make, and expressly disclaim, any representation or warranty (expressed or implied) as to the accuracy and/or completeness of the information contained in this presentation. Any liability is hereby expressly disclaimed to the fullest extent legally possible. In particular, no representations or warranties are made as to statements, approximations, estimates and projections in respect of the anticipated future performance of the Company and/or the industries within which it operates. Neither the Company nor any of its affiliates, officers, directors, members of management, employees, advisors or representatives undertake any obligation to provide additional information or to correct or update any of the information set forth in this presentation.

This presentation, all discussions regarding the Company and any potential related investments and/or transactions are strictly confidential. This presentation shall remain the property of the Company and must not be copied, reproduced, distributed or otherwise disclosed, in whole or in part, to any other person at any time without the prior written consent of the Company. Recipients of this presentation may not disclose to any third party (unless required by law) the fact that they are involved in any discussions relating to the Company or an investment in, or any other transaction relating to, the Company.

This presentation shall not constitute an offer or solicitation of an offer regarding an investment in, or any other transaction relating to, the Company. It is understood that no person has agreed to, nor is any person, by virtue of providing or accepting this presentation, undertaking any obligation to enter into any transaction. This presentation shall not be the basis for any contract by, or relating to, the Company, including implied contract or any other legal theory of liability.

CONTACT

Marvel Fusion GmbH
Theresienhöhe 12
80339 München
Heike.Freund@marvelfusion.com

Magnet	Laser	Material Simulation	Planung	Diagnostik	Energietechnik + Energiesysteme	Sonstige Kerntechniken	Brennstoff (-Kreislauf)	Sonstiges	unklar		HOCHSCHULE	Bezeichnung des Lehrstuhls, der Professur oder der Nachwuchsgruppe (aktuelle/r Inhaber/in)	Thematische Schwerpunkte mit Fusionsbezug	bestehend seit / geplant ab	ggf. weitere Erläuterungen
x		x			x					1	TH Würzburg- Schweinfurt	Institut und Labor für Energie- und Hochspannungstechnik (<i>Prof. DrIng. Markus H. Zink</i>)	Elektrische Energietechnik, Hochspannungstechnik, Hochspannungsisoliersysteme	Berufung 09/2013	Isoliersysteme für supraleitende Magnetspulen, Paschentests an Fusionsmagneten
	x				x					2	LMU	Professur für Laser-Ionen-Beschleunigung (Prof. Schreiber)	Laser-Plasma-Wechselwirkung bei hohen Energiedichten	seit 2011	Physikalische Grundlagenforschung mit Anwendung in der Medizinphysik und Untersuchungen der Wechselwirkung zwischen ionisierender Strahlung mit Materie
	x									3	LMU	Professur für Hochleistungs-Laserphysik (Prof. Karsch)	Entwicklung von Hochleistungslasern, relativistische Laser-Plasma- Wechselwirkung	seit 2008	Physikalische Grundlagenforschung mit Anwendung u.a. in der Medizinphysik und Untersuchung der Laser-Plasma- Beschleunigung
x										4	Universität Bayreuth	Theoretische Physik V (Prof. A.G. Peeters)	Transportprozesse in Fusionsplasmen mit magnetischem Einschluss	seit 2010	
										5	Universität Bayreuth	Keramische Werkstoffe (Prof. DrIng. Stefan Schafföner)	Hochleistungs-/Hochtemperatur-Keramik	1989 (Vorgänger- Lehrstuhl)	
										6	Universität Bayreuth	Anorganische Chemie III (Prof. Dr. Jürgen Senker)	Festkörper-NMR multipler Kerne	2004	
										7	Universität Bayreuth	Anorganische Aktivmaterialien für elektrochemische Energiespeicher (<i>Prof. Dr.</i> <i>Matteo Bianchini</i>)	Analytik oxidischer Materialien mittels XRD und Nano-TOF-SIMS	2021	
										8	Universität Bayreuth	Operando-Analytik elektrochemischer Energiespeicher (NN)	Längenskalenübergreifende Strukturanalytik	in Besetzung	
										9	Universität Bayreuth	Neue Materialien Bayreuth (NMB)	Hochtemperaturprüfanlage bis 1800 °C	2000 (Gründung NMB)	externer Partner (außeruniversitäre Forschungseinrichtung, gefördert durch Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie)
										10	Universität Bayreuth	Fraunhofer-Zentrum für Hochtemperatur-Leichtbau HTL	Hochtemperaturkeramik	2012	externer Partner, Teil von Fraunhofer ISC Würzburg
x										12	Universität Augsburg	Institut für Physik, AG Experimentelle Plasmaphysik (<i>Prof. Fantz</i>)	Institut für Physik, AG Experimentelle Plasmaphysik (Prof. Fantz)	seit 2008	in Kooperation mit dem Max-Planck-Institut für Plasmaphysik (IPP) auf 5-Jahres-Basis mit Wiederverlängerung
x		х								13	Universität Augsburg	Institut für Physik, Experimentalphysik IV (<i>Prof. Dr. M. Albrecht</i>)	Diamantschichten, magnetische Funktionsmaterialien	seit 2013	
x		x								14	Universität Augsburg	Institut für Physik, Experimentalphysik V/VI, Zentrum für Elektronische Korrelationen und Magnetismus (EKM)	Untersuchung von Quantenmaterialien mit starken Elektronenkorrelationen im Hinblick auf; unkonventionelle Supraleitung, neue magnetische und topologische Zustände sowie Materialien für die milli-Kelvin adiabatische Entmagnetisierungskühlung	seit 2023	Grundlagenforschung im DFG Sonderforschungsbereich TRR 360 sowie Validierungsförderung Bayern Innovativ für die Tieftemperaturkühlung
		х								15		Institut für Physik, Lehrstuhl Festkörperchemie (Prof. Dr. Dirk Volkmer)	Materialentwicklung: Entwicklung von Quantensieben zur Trennung leichter Isotope (Wasserstoff, Helium)		Grundlagenforschung
		x					x			16		Institut für Materials Resource Management, Lehrstuhl Materials Engineering (Prof. DrIng. Dietmar Koch	Materialentwicklung: SiC/SiC = Faserverbundwerkstoffe, die als Rods für Brennelemente genutzt werden können, da sie stabil gegenüber radioaktiver Strahlung sind.	seit 2019	Grundlagenforschung, aktuell kein finanziertes Drittmittelprojekt, Kooperation geplant mit Max-Planck-Institut für Plasmaphysik, Bereich Plasmarand und Wand
		x								17	Universität Augsburg	Institut für Materials Resource Management, Lehrstuhl Hybride Werkstoffe (Prof. DrIng. Kay Weidenmann)	Materialentwicklung: MMC-Durchdringungswerkstoffe als potenzielle plasma-facing materials (PFM), in-situ Charakterisierung von Werkstoffen	seit 2019	Grundlagenforschung, aktuell kein finanziertes Drittmittelprojekt

	Т	П		Т			$\overline{}$	Universität Augsburg	Institut für Materials Resource Management, Lehr-	Zustandsüberwachung von technischen Systemen und Anlagen,	seit 2020	Grundlagenforschung, aktuell kein finanziertes Drittmittelprojekt,
	x	x			x		18		und Forschungseinheit Mechanical Engineering (Prof. Dr. Markus Sause)	Wolframfaserverstärktes Wolfram, in-situ Charakterisierung von Werkstoffen		vormalige Kooperation mit Max-Planck-Institut für Plasmaphysik für Grenzflächencharakterisierung von Wolframfaserverstärktem Wolfram
	x						19	Universität Augsburg	Institut für Materials Resource Management, Professur für Processing of Complex Structured Materials for Demanding Environments (Prof. Dr. Suelen Barg)	Materialentwicklung: 2D Materialien, wie z.B. MXene, als potenzielle Shieldingwerkstoffe, funktionelle Nanokeramiken auf MXene-basis für anspruchsvolle Umgebungen.	seit 2021	Grundlagenforschung, aktuell kein finanziertes Drittmittelprojekt, Kooperation geplant mit Max-Planck-Institut für Plasmaphysik, Bereich Plasmarand und Wand
		x					20	Universität Augsburg	Institut für Mathematik, Lehrstuhl High- Performance Scientific Computing, (Prof. DrIng. Michael Schlottke-Lakemper (seit 2024)) (Prof. Dr. Martin Kronbichier (bis 2023))	Entwicklung von numerischen Methoden, Algorithmen und Software für adaptive Multiphysik-Simulationen für High-Performance Computing, mit Anwendungen im Bereich Plasmaphysik		Grundlagenforschung; DFG-Forschungsgruppe FOR5409 zu gekoppelten Multiphysik-Problemen u.a. zusammen mit Max- Planck-Institut für Plasmaphysik; Fokus auf Methoden- /Softwareentwicklung
		x					21	Universität Augsburg	Institut für Mathematik, Professur für Wissenschschaftliches Rechnen (Prof. Dr. Tatjana Stykel)	Entwicklung von numerischen Simulationsmethoden für Plasma- Dynamik	seit 2023	Grundlagenforschung; aktuell kein finanziertes Drittmittelprojekt, Kooperation geplant mit Max-Planck-Institut für Plasmaphysik, Bereich Numerische Methoden in der Plasmaphysik
	x			x			22	Hochschule Landshut	Professur für Strömungsmechanik, Wärmeübertragung und Energietechnik (Prof. Dr. Tim Rödiger)	Wärmefluss- und Temperatursensoren (Atomic Layer Thermopiles) für die zeitaufgelöste Untersuchung von Wärmelasten z.B. bei Plasma-Wand- Interaktionen und schnellen Wärmetransportprozessen.	seit 2012	
						,	23	Universität Würzburg	Astrophysik (Prof. Dr. Karl Mannheim)	Plasmaphysik, kinetische Theorie, MeV-Gammastrahlung, abbildende Detektoren	seit 2001	Lehrstuhl für Astronomie am Institut für Theoretische Physik und Astrophysik. Synergie mit ECAP der FAU Erlangen.
					x	х	24	Universität Würzburg	Anorganische Chemie II (Prof. Dr. Holger Braunschweig)	Borchemie	seit 2002	Institut für nachhaltige Chemie & Katalyse mit Bor (ICB)
					х	х	25	Universität Würzburg	Anorganische Chemie III (Prof. Dr. Maik Finze)	Borchemie	seit 2011	Institut für nachhaltige Chemie & Katalyse mit Bor (ICB)
		x					26	Universität Würzburg	Informatik/Künstliche Intelligenz (Prof. Dr. Ingo Scholtes)	Graphentheorie neuronaler Netze	seit 2021	Zentrum für Künstliche Intelligenz und Datenwissenschaften CAIDAS
						x	27	Universität Würzburg	Öffentliches Recht (<i>Prof. Dr. Kyrill-Alexander</i> Schwarz)	Strahlenschutz- und Atomrecht; Anlagengenehmigungsrecht; Gesellschaftliche Akzeptanz durch Recht	seit 2010	Ggfis. Erweiterung auf Energie-, Atom- und Strahlenschutzrecht, einschließlich der intra- und interdisziplinären Bezüge zur Governance- und Resilienzforschung auf der Basis von Vorarbeiten. Profs. Schwarz und Ludwigs)
x		П					28	Universität Erlangen- Nürnberg	Lehrstuhl für Photonische Technologien (Prof. Dr Ina. Michael Schmidt)	Ultrakurzpulslasertechnologien	seit 2009	
		х				x	29	Universität Erlangen- Nürnberg	Lehrstuhl für Physik (Prof. Dr. Stefan Funk)	Hochenergie Astrophysik, insbesondere Gammastrahlungs- Astronomie mit Fermi-LAT, H.E.S.S., SWGO und CTA; Laborastrophysik, bei der astrophysikalische Prozesse im Labor nachgestellt werden, typischerweise bei Beamlines mit Hochleistungslasem	seit 2026	Direktor des Erlangen Centre for Astroparticle Physics
		П				х	30	Universität Erlangen- Nürnberg	Lehrstuhl für Astronomie und Astrophysik (Prof. Dr. Jörn Wilms)	Röntgenastronomie	seit 2006	Teil der Leitung des Erlangen Centre for Astroparticle Physics
						х	31	Universität Erlangen- Nürnberg	Professur für Multiwellenlängenastronomie (Prof. Dr. Manami Sasaki)	Multiwellenlängenastronomie, Hochenergieastrophysik	seit 2016	Teil der Leitung des Erlangen Centre for Astroparticle Physics
						х	32	Universität Erlangen- Nürnberg	Lehrstuhl für Theoretische Physik (<i>Prof. Dr.</i> Thomas Thiemann)	u.a. Quanten(feld)theorie	seit 2009	Teil der Leitung des Erlangen Centre for Astroparticle Physics
			х	x			33	Universität Erlangen- Nürnberg	Thomas Themann) Lehrstuhl für Elektrische Energiesysteme (Prof. DrIng. Matthias Luther)	Betreuung von Prüfanlagen für die elektrische Energieversorgung	ab 2025	Mitarbeiter Dieter Braisch verantwortet das Hochleistungsprüffeld (bestehend aus dem Hochspannungs- und Hochstromlabor), die u.g. Prüfgeräte und die Lehrveranstaltungen zur Hochspannungs- und Diagnosetechnik, in denen die Grundlagen für Forschungs- und Entwicklungsaufgaben im Umgang mit den Prüfgeräten gelegt werden.
	х		х				34	Universität Erlangen- Nürnberg	Lehrstuhl für Werkstoffwissenschaften – Werkstoffkunde und Technologie der Metalle (Prof. DrIng. Carolin Körner)	u.a. Arbeitsgruppe Additive Fertigung	seit 2011	
					х	х	35	Universität Erlangen- Nürnberg	Lehrstuhl für Anorganische und Allgemeine Chemie (Prof. Dr. Karsten Meyer)	Uranchemie, besondere Expertise in Radiochemie	seit 2006	
	x						36	Universität Erlangen	Lehrstuhl für Werkstoffwissenschaften -Allgemeine	Mikrostruktur-Eigenschaftsbeziehung, u.a. Arbeitsgruppen Hochtemperaturwerkstoffe und Nanomechanik; Bruchmechanik und	seit 2002	Dr. Steffen Neumeier (Gruppenleiter Hochtemperaturwerkstoffe) besitzt seit vielen Jahren enge Kontakte zum FRM II in Garching

							37	Universität Erlangen- Nürnberg	Lehrstuhl für Fertigungsautomatisierung und Produktionssystematik (FAPS) (<i>Prof. DrIng. Jörg Franke</i>)	Digitale CAD/CAM-Verfahrensketten und NC-gesteuerte Montageprozesse für supraleitende Wicklungen zur Erzeugung präzise geführter Hochleistungs-Magnetfelder	seit 1982	
				x			38	Hochschule München	Forschungsbereich Elektrische Energieversorgungs-netze (<i>Prof. DrIng. Georg Kerber</i>)	Netzführung; Netzstabilität; Netzplanung und Prognosen sowie Integration von Erzeugungsanlagen in das Stromnetz; Technische Anforderungen an Erzeugungsanlagen; Netzwiederaufbau; Inselnetzfähigkeit.	Aug 21	Es findet keine direkte Fusionsforschung statt. Ich würde die Schnittstelle in die Energiewirtschaft und insbesondere zu den Anforderungen aus/für das Stromnetz vertreten.
x							39	TU München	Plasmarand- und Divertorphysik / NAT (Department Physik, <i>Prof. Dr. Ulrich Stroth</i> , gemeinsam mit IPP)	Plasmarand- und Divertorphysik	seit 2012	Nachbesetzung gemeinsam mit IPP nach Jülicher Modell im Gange
x	x						40	TU München	Plasma-Material-Wechselwirkung / ED (Dept. of Materials Engineering, <i>Prof. Dr. Rudolph Neu</i> , gemeinsam mit IPP)	Entwicklung plasmabelasteter Hochleistungskomponenten, Materialentwicklung für plasmabelastete Komponenten, Plasma Material Wechselwirkung, Grundlagenforschung Plasmaphysik	seit 2014	Nachbesetzung gemeinsam mit IPP nach Jülicher Modell geplant; Zusammenarbeit mit MPI für Plasmaphysik, Maier-Leibniz- Zentrum, EUROfusion, FZJ, KIT, Fraunhofer IGCV, Fraunhofer IFAM, Louis Renner GmbH, OSRAM Pre-Materials, Commonwealth Fusion Systems, Harrländer (LEONI)
х							41	TU München	Gruppe Prof. Antonio Cardella / ED (Dept. of Materials Engineering gemeinsam mit IPP)	Kemfusionstechnologien	seit 2017	Honorarprofessor bei Lehrstuhl Macian
				x		x	42	TU München	Nukleartechnik / ED (Dept. of Materials Engineering, <i>Prof. Dr. Rafael Macián-Juan</i>)	Nukleartechnik	seit 2007	Neutronentransport, Analagensicherheit, Abschirmungs- und Dosisberechnungen, Dampferzeugung
x							43	TU München	Wissenschaftliche Direktorin IPP (Prof. Sibylle Günter)	Tokamak- und Stelleratorphysik	seit 2006	Honorarprofessorin an der TUM NAT, Department Physik
		x		x			44	TU München	Emeuerbare und Nachhaltige Energiesysteme / ED (<i>Prof. Dr. Thomas Hamacher</i> , Dept. Energy and Process Engineering)	Lehrstuhl für Erneuerbare und Nachhaltige Energiesysteme	seit 2010	Simulationen von Energienetzen unter Einbezug von Fusions- und Spaltungsreaktoren
	x					x	45	TU München	Arbeitsgruppe Physik mit Positronen/ NAT, FRM II (Prof. Christoph Hugenschmidt)	Positronenphysik	seit 2001	Positronen-Elektronenplasma, Defekte in der Plasmawand, Positronensprektroskopie
		x		x			46	TU München	Arbeitsgruppe Simulationen in der Kemtechnik / NAT, FRM II	Nukleartechnik	seit 2019	Neutronentransport, Abschirmungs- und Dosisberechnungen, Thermo-Hydraulik, gekoppelte Simulationen, Anwendung von KI in der Kerntechnik, Messung mechanischer Eigenschaften von fusionsrelevanten Materialien
		x		x			47	TU München	Lehrstuhl Energiesysteme (Prof. Dr. Hartmut Spliethoff), Lehrstuhl für Aerodynamik und Strömungsmechanik (Prof. Dr. Nikolaus Adams), Lehrstuhl für Thermodynamik (Prof. Dr. Dongsheng Wen)	Verschiedene Aspekte von Kraftwerken und Energieerzeugung		Thermohydraulik, moderne Simulationscodes inkl. Al
x		x					48	TU München	Numerische Methoden der Plasmaphysik / CIT (Dept. of Mathematics, <i>Prof. Dr. Eric</i> Sonnendrücker)	Modellierung und numerische Simulation von Problemen aus der Plasmaphysik, insbesondere der magnetischen Fusion	2012	Gemeinsame Berufung mit dem Max-Planck-Institut für Plasmaphysik (IPP)
x		x	х				49	TU München	Computational Physics / CIT (Dept. of Computer Science, HonProf. Dr. Frank Jenko)	Computergestützte Plasmaphysik, insbesondere im Rahmen der magnetischen Fusion; High Performance Computing: Künstliche Intelligenz, Tomakaktheorie IPP	2018	Frank Jenko ist Direktor am Max-Planck-Institut für Plasmaphysik (IPP)
		x					50	TU München	Scientific Computing / CIT (Dept. of Computer Science, Prof. Dr. Hans-Joachim Bungartz)	High-performance Computing, Parallel Computing, hochdimensionale Numerik, Dimensionsreduktion, Datenanalyse – alles angewandt auf Fusionssimulation	2010	Kooperation mit dem IPP seit vielen Jahren, verschiedene Projekte (u.a. DFG-SPP, MuDS)
		х					51	TU München	Numerik komplexer Systeme / CIT (Dept. of Mathematics, Prof. Dr. Oliver Junge)	Dynamische Systeme, Optimalsteuerung, Numerik, numerische Software	seit einigen Jahren	Zusammenarbeit mit E. Sonnendrücker
x							52	TU München	Hochfrequenztechnik / CIT (Dept. of Electrical Engineering, <i>Prof. Dr. Thomas Eibert</i>)	Plasmadiagnostik mit Mikrowellen, Realisierung geeigneter Hardware	seit einigen Jahren	Zusammenarbeit mit dem IPP

	_	_			_	_	_		_	_										
Magnet	Lasor	Material	Planung	Diagnostik	Energietechnik + Energiesysteme	Sonstige Kemtechniken	Sonstiges	unmittelbarer Fusionsbezug - Grundlagenstudium / Fusion als Teilaspekt	unmittelbarer Fusionsbezug -	mittelbarer Fusionsbezug		HOCHSCHULE	Bezeichnung des Studiengangs (Bachelor/Master)	Regelstudienzeit (Sem.)	ggf. erforderliches Grundstudium	Thematische Schwerpunkte mit Fusionsbezug	bestehend seit / geplant ab	beteiligte Lehrstühle	Partner an anderen Hochschulen	ggf. weitere Erläuterungen
	x							x			1	LMU	Physik							Lehrveranstaltungen zur Laserphysik und Laser-Plasma- Wechselwirkung von Prof. Karsch und Prof. Schreiber; Lehrveranstaltungen zur Plasmaphysik von Prof. Zohm (MPG, Honorarprofessor an der LMU)
								х			2	Universität Bayreuth	Physik M. Sc.	4	Physik B. Sc.	Magnetischer Einschluss	< 2010	Theoretische Physik V		Tronoral processor an der enroy
	\neg	-		$\overline{}$		\neg	-		-	\top		Universität Bayreuth	Master Materials Chemistry	2 Jahre	einschlägiges	Synthese und Charakterisierung	<2010	Anorganische Chemie III, Anorganische		
											3		and Catalysis		Bachelorstudium	anorganischer Werkstoffe		Aktivmaterialien für elektrochemische Energiespeicher, Operando-Analytik elektrochemischer Energiespeicher		
											4	Universität Bayreuth	Master Materialwissenschaft und Werkstofftechnik	2 Jahre	einschlägiges Bachelorstudium	Prozesstechnik, Testung und Alterung		Keramische Werkstoffe		
					x			x			5	Universität Augsburg	Physik B.Sc.	6	-	Atom- & Kernphysik, Festkörperphysik, Physikalische Grundlagen der Energieversorgung, Energieträger im Zeitalter des Klimawandels	B.Sc. seit 2009 (davor Diplom)	Institut für Physik		
	:	x						x			6	Universität Augsburg	Physik M.Sc.	4	Physik, MSE, B.Sc.	Festkörperphysik, Plasmaphysik und Fusionsforschung, Plasma-Material- Wechselwirkung, Fundamentals of Materials for Energy	(davor Diplom)	Institut für Physik		
		x						x			7	Universität Augsburg	Materials Science and Engineering B.Sc.	6	-	Materialwissenschaften, Atom- & Kemphysik, Festkörperphysik	seit 2010	Institut für Physik, Institut für Materials Resource Management		
\vdash	+			+		+	+	-	+	+		Universität Augsburg	Materials Science and	4	Physik, MSE,	Materialwissenschaften.	seit 2010	Institut für Physik, Institut für Materials		internationaler Master
		x						x			8		Engineering M.Sc.		Engineering B.Sc.	Festkörperphysik, Plasma-Material- Wechselwirkung, Fundamentals of Materials for Energy		Resource Management		intelligionale maste
		x	:					x			9	Universität Augsburg	Data Science B.Sc.	6	-	Methoden der Künstlichen Intelligenz (KI), Big Data, daten-getriebene Modellierung und Simulation	seit 2022	Institut für Informatik, Institut für Mathematik		
			x				х	x			10	Universität Augsburg	Mathematik und Informatik	6	-	KI, Big Data, Softwareengineering, Prozessautomatisierung	seit 2023	Institut für Informatik, Institut für Mathematik		
		x					T	x			11	Universität Augsburg	Materialchemie M.Sc.	4	Physik, MSE, Chemie B.Sc.	Materialwissenschaften ("Bottom-Up Design funktionaler Materialien"), poröse Funktionsmaterialien	seit 2022	Institut für Physik, Institut für Materials Resource Management		
		х								x	12	Universität Augsburg	Data Science M.Sc.	4	Informatik, WirtschaftsmathematikB. Sc.	Methoden der Künstlichen Intelligenz (KI), Big Data, daten-getriebene Modellierung und Simulation		İnstitut für İnformatik, İnstitut für Mathematik		
		x	x							x	13	Universität Augsburg	Mathematik und Informatik M.Sc.	4	Data Science, Mathematik und Informatik, Mathematik, Informatik, Wirtschaftsmathematik B.Sc.	Prozessautomatisierung	geplant ab 2025	Institut für Informatik, Institut für Mathematik		
		X								x	14	Universität Augsburg	Mathematik B.Sc.	6	-	Mathematische Modellierung, Numerische Simulation	seit 2007 (davor Diplom)	Institut für Mathematik		
		x								x	15	Universität Augsburg	Mathematik M.Sc.	4	Mathematik oder verwandte Studiengänge B.Sc.	Mathematische Modellierung, Numerische Simulation	seit 2007 (davor Diplom)	Institut für Mathematik		
		x								x	16	Universität Augsburg	Mathematical Analysis and Modelling M.Sc.	4	Mathematik oder verwandte Studiengänge B.Sc.	Mathematische Modellierung, Numerische Simulation	seit 2017	Institut für Mathematik		internationaler Master
						x	Т	x			17	Universität Würzburg	Physik BaMa	6+4	konsekutiv	Kern- und Teilchenphysik, Astrophysik		Astrophysik	ECAP der FAU Erlangen	
	\top					,	x	x			18	Universität Würzburg	Chemie BaMa	6+4	konsekutiv	Chemie der leichten Elemente H/D, Li, Be, B; Bor in energierelevanten Prozessen		Anorganische Chemie I, II, III		
	x					,	x	x			19	Universität Würzburg	PlasmaAstroParticle Master	4	Bachelor Physik /Informatik	Komplexe Vielteilchensysteme (Plasmen, Kerne, Elementarteilchen)		Astrophysik, Informatik, Experimentelle Physik, Theoretische Teilchenphysik, Ionen/Laser Wechselwirkung, Quantenfeldtheorie	Internationale Großforschungs-geräte	Skizze für neuen Eiltestudiengang soll bis 31.07.2024 beim ENB eingereicht werden.
						1	x	x			20	Universität Würzburg	Funktionswerkstoffe	6+4	konsekutiv	Interdisziplinäre Ausbildung für zukunftsrelevante Funktionswerkstoffe	seit 2016	Physik, Chemie		Kooperationspartner ISC, ZAE

x					x			21	Universität Erlangen- Nürnberg	Bachelor of Science Physik	6		z.B. Vorlesungen 1.Elektrodynamik; 2. Quantentheorie; 3. Statistische Physik, darin u.a. Grundlagen für 1. Magnetohydrodynamik und Plasmaphysik; 2. Tunneleffekt; 3. Transportgleichungen		(Thomas Thiemann)	n. a.	
					x			22	Universität Erlangen- Nürnberg	Master of Science Physics	4	konsekutiv	z.B. Vorlesung Quantenfeldtheorie, darin theoretische Grundlagen der Kernfusion, u.a. Quanten- Chromodynamik	laufend	(Thomas Thiemann)	n. a.	
	x				x			23	Universität Erlangen- Nümberg	Bachelor of Science Materialwissenschaft und Werkstofftechnik	6		u.a. Hochtemperaturwerkstoffe, Verbundwerkstoffe, Herstellungstechnogien und Charakterisierungsmethoden für diese Werkstoffe	laufend	Lehrstuhl für Werkstoffwissenschaften – Werkstoffkunde und Technologie der Metalle (Carolin Körner); Lehrstuhl für Werkstoffwissenschaften – Allgemeine Werkstoffeigenschaften (Mathias Göken)	n.a.	
	x				x			24	Universität Erlangen- Nümberg	Master of Science Materialwissenschaft und Werkstofftechnik	4	Zulassung nach Qualifikationsfest- stellungsprüfung	u.a. Hochtemperaturwerkstoffe, Verbundwerkstoffe, Herstellungstechnogien und Charakterisierungsmethoden für diese Werkstoffe; Wechselwirkung von Strukturwerkstoffen mit Neutronen	laufend	Werkstoffkunde und Technologie der Metalle (Carolin Körner); Lehrstuhl für Werkstoffwissenschaften – Allgemeine Werkstoffeigenschaften (Mathias Göken)	n. a.	
	x				x			25	Universität Erlangen- Nürnberg	Bachelor of Science KI- Materialtechnologie	6		u.a. Hochtemperaturwerkstoffe, Verbundwerkstoffe, Herstellungstechnogien und Charakterisierungsmethoden für diese Werkstoffe	ab Wintersemester 2024/2025	Lehrstuhl für Werkstoffwissenschaften – Werkstoffkunde und Technologie der Metalle (Carolin Körner): Lehrstuhl für Werkstoffwissenschaften – Allgemeine Werkstoffeigenschaften (Mathias Göken)	n. a.	
	x				х			26	Universität Erlangen- Nürnberg	Bachelor of Science Nanotechnologie	6		u.a. Hochtemperaturwerkstoffe, Verbundwerkstoffe, Herstellungstechnogien und Charakterisierungsmethoden für diese Werkstoffe	laufend	Werkstoffkunde und Technologie der Metalle (Carolin Körner); Lehrstuhl für Werkstoffwissenschaften – Allgemeine Werkstoffeigenschaften (Mathias Göken)	n.a.	
	x				x			27	Universität Erlangen- Nümberg	Master of Science Nanotechnologie	4	konsekutiv	u.a. Hochtemperaturwerkstoffe, Verbundwerkstoffe, Herstellungstechnogien und Charakterisierungsmethoden für diese Werkstoffe; Wechselwirkung von Strukturwerkstoffen mit Neutronen	laufend	Werkstoffkunde und Technologie der Metalle (Carolin Kömer); Lehrstuhl für Werkstoffwissenschaften – Allgemeine Werkstoffeigenschaften (Mathias Göken)	n. a.	
								28	Universität Erlangen- Nürnberg	Mechatronik Bachelor & Master	4+6		Elektromaschinenbau		u.a. FAPS		
x				x		x		29	TU München	Studiengang Nukleartechnik (Master)	4	Bachelor Ingenieurwissen-schaften / Naturwissen-schaften	Halb Fusion, halb Fission 1	ab 2025	TUM Prof. Macian, TUM ED, TUM Physik		
x				x		x		30	TU München	Ausbildung von Doktoranden	6	abgeschlossener Master NAT / ED	Fusion and Fission Physics, Grundlagen Kerntechnik	seit 1957	FRM II, RCM, Macian, IPP, ED, NAT	Helmholtz, Max-Planck, internationale Partner (CEA, SCK CEN, ILL, Framatome, DOE National Laboratories,)	Keiner dürfte bundesweit eine ähnliche Anzahl von ausgebildeten Doktoranden in Fusion und Fission vorweisen können wie die TUM.
x				x		x		31	TU München	Nuclear Technology and Applications	4	abgeschlossenere Bachelor NAT / ED		geplant ab 2025	NAT, ED, IPP, CIT, FRM II	McMaster, Poli technico di Milano, TU Delft, UGA- Grenoble, Framatome	
x				x		x		32	TU München	Zahlreiche Vorlesungen in den Masterstudiengängen von NAT und ED, welche direkten Bezug zu Plasmaphysik und Kerntechnik haben					NAT, ED, IPP, CIT, FRM II		
		x					x	33	TU München	Computational Science and Engineering	4	Natur- oder ingenieur- wissenschaftliches Studium; Mathematik und Informatik mit starkern Anwendungs- bezug	Computational Plasma Physics	2012	Numerische Methoden der Plasmaphysik		
		x					x	34	TU München	Mathematics in Science and Engineering	4	Natur- oder ingenieur- wissenschaftliches Studium; Mathematik und Informatik mit starkem Anwendungs- bezug	Computational Plasma Physics	2012	Numerische Methoden der Plasmaphysik		

Magnet	Laser	Simulation	Planung	Diagnostik	Energietechnik + Energiesysteme	Sonstige Kerntechniken	Sonetiae	o Bronzo			HOCHSCHULE	Bezeichnung / Beschreibung Entwicklung von experimentelen	Projektziele mit Fusionsbezug	Projektlaufzeit	Verantwortliche / Beteiligte in der Hochschule	Externe Partner: Hoohschulen und AUFE ¹ sowie andere öffentliche Organisationen	Externe Partner: Privatwirtschaft und private Stiftungen (Vertraulichkeit: grün=Bericht; gelb=kommissionsintem, rot=geheim) [nicht öffentliche Information]	ggf. weitere Erläuterungen
	x									1		Methoden bei Laser-Plasma- Wechselwirkung mit intensiver Kurzpulslaser-Strahlung bei ultrahohem Kontrast			Prof. Karsch, Prof. Schreiber			physikalischen Grundlagen
	x									2	LMU	Charakterisierung von schnellen Prozessen in dichten Plasmen durch Röntgenbildgebung		2022 - 2027	Prof. Karsch	University of Oxford, TUIM	[nicht öffentliche Information]	Experimente zur Betatron- und Thomsonstrahlung von laserbeschleunigten Elektronen, Entwicklung neuer Konzepte für laser-basierte Beschleuniger
x						\blacksquare	\perp		x	3	Universität Bayreuth	Kooperation	Vielfalt	14 Jahre		Max-Planck-Institut für Plasmaphysik (IPP)		
	_			\Box	\rightarrow	\perp	+	1	_	4	Universität Bayreuth	SFB 1585 "MultiTrans"	Multiple Transportprozesse			Universität Augsburg, Universität Ulm		
x										5	Universität Augsburg	Fusionsorientierte Plasmaphysik	Physik und Technologie der Neutralteilchenheizung, Entwicklung von Plasmadiagnostiken, Untersuchungen zur Plasma-Material-Wechselwirkung	seit 2008	-	Max-Planck-Institut für Plasmaphysik (IPP)		Aktuell bis Ende 2025, Verlängerung bis 2030 bei Rechtsabteilung
		×								6	Universität Augsburg	KI-Produktionsnetzwerk	KI-basierte Fertigungstechnologien mit Fokus auf Werkstoffe (inkl. Hochtemperaturwerk-stoffe)	seit 2021	Prof. DrIng. M. Sause (Direktor) / ca. 35 beteiligte Professorinnen und Professoren	TH Augsburg, DLR ZLP, FhG IGCV	ca. 300 beteiligte Unternehmen (keine Farbe!)	
		x x								7	Universität Augsburg	Zentrum für Advanced Analytics and Predictive Sciences (CAAPS)	Modell- und Methodenentwicklung, Data-driven Materials	seit 2021	Prof. Dr. D. Peterseim (Direktor) / ca. 40 beteiligte Professorinnen und Professoren			
					x			1	x	8	Hochschule Landshut	Entwicklung und Erprobung einer resistenten, hochzetaufgelösten, simultanen Messmethod k von Oberflächentemperatur und - wärmeflüssen für Luffahrtanwendungen-EnEhOw	Erprobung der Wärmefluss- und Temperatursensoren (Atomic Layer Thermopiles) in Plasma- und Hochenthalpiekanälen der UniBW München.	01.01.2022 – 31.12.2024	Prof. Dr. Tim Rödiger	Universität der Bundeswehr München, Institut für Thermodynam k		
		x x			x					9	Hochschule Landshut	Entwicklung einer neuartigen, hochzeitauflösenden Wärmeflussmesstechnik für Anwendungen in der Energie und Antriebstechnik NHEAT	Erprobung einer neuen Methodik für simultane Wärmestrom – und Temperaturmesstechnik auf Basis von ALTPs	01.09.2018 – 31.12.2021	Prof. Dr. Tim Rödiger			
		x	П	П		\top	Т	٠,	×	10	Universität Würzburg	Elysium (BMBF	Plasmainstabilitäten	2025-2030	Dr. Christian Fromm	[nicht öffentliche Information]		[nicht öffentliche Information]
		x x		x			1	Ť		11	Universität Würzburg	Nachwuchstalente) Reaktordiagnose (BMBF Verbundforschungsprojekt FORKA)	Comptonkamera zur Bildgebung der radioaktiven Belastung von Wandmaterialien und für Gammaspektroskopie zur Identifizierung von Isotopen		Dr. Thomas Siegert	Uni Mainz	[nicht öffentliche Information]	BMBF FORKA Antrag in Vorbereitung. Ggfls. auch Basistechnologie Kemfusion (BMBF)
	+	+		\vdash	+		,	,	+	12	Universität Würzburg	SFB 1762	Synthese energierelevanter Borverbindungen	eingereicht	Prof. Maik Finze	Universitäten Frankfurt und Bonn, ISC Würzburg		eingereicht
		Ť					c 2			13	Universität Würzburg	Industriekooperation	Synthese Bor- und Wasserstoff(H/D)-haltiger Materialien für die Kernfusion	seit 2022	Prof. Holger Braunschweig, Prof. Maik Finze		Marvel Fusion GmbH	
							. ,			14	Universität Würzburg	Forschungskonsortium	Synthese nanostrukturierter Bor-haltiger Targets für die Kemfusion	seit 2022	Prof. Holger Braunschweig	Prof. Holger Braunschweig	BASF AG, Marvel Fusion GmbH	
		x		x			,			15	Universität Würzburg	Industriekooperation	Methoden- und Geräteentwicklung für die thermische Analyse; Analyse energierelevanter (Bor)Verbindungen	seit 2023	Prof. Maik Finze		NETZSCH-Gerätebau GmbH	
		×								16	Universität Würzburg	Wiederbesetzung Lst AC II (Nachfolge Braunschweig)	Nachhaltige Synthesse- und Materialchemie – leichte s- und p-Blockelemente für energierelevante Materialien, Fusionsprozesse und die Katalyse					Schwerpunktbildung mit weiteren Lehrstühlen/Professuren und Synergien mit Physik im Bereich Festkörpermaterialien

		_	_	 	_	_				I					
	x		×				17	Universität Würzburg	Inspektion von Werkzeugen im Kemreaktor mittels Röntgen- Computertomograph	Darstellung von Materialfehlem durch Neutronenbestrahlung und Analyse von atomaren Verschiebungen mit XANES	beendet	Prof. Randolf Hanke (em.)	Prof. Simon Zabler (HS-Deg) European Synchrotron Radiation Facility (ESRF), ILL		Anknüpfung möglich. Synergie im Interesse des Kooperationspartners Fraunhofer IIT (EZRT) (Tabelle D.3)
		x					18	Universität Würzburg	Center for Artificial Intelligence and Data Science (CAIDAS)	Entwicklung und Anwendung von KI-Methoden für physikalische Simulationen und Anwendung von Data Science in den Wissenschaften	Gründung im Dezember 2020 als zentrale wissenschaft-liche Einrichtung der JMU	Prof. Andreas Hotho/Prof. Ingo Scholtes	CAIDAS ist Knoten im bayerischen KI-Netzwerk baiosphere, internationale Kollaborationen auf der Ebene o.g. CAIDAS-Mitglieder, u.a. mit Universität Zürich, ETH Zürich, Northeastern University, Princeton University, CERN		Aktuell 20 besetzte CAIDAS-Professuren mit Fokus KI und Data Science mit Schwerpunkten u.a. in Deep Learning, Computer Vision, NLP, Reinforcement Learning, Graph Learning, Pattern Recognition, fünf weitere Professuren aktuell in Besetzung
x							19	Universität Erlangen- Nürnberg	Erzeugung angepasster Intensitätsverteilungen bei der Lasermaterialbearbeitung mit ultrakurzen Laserpulsen	Räumliche Formung von gepulster Laserstrahlung	2018-2021	Lehrstuhl für Photonische Technologien (Michael Schmidt)			Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
x							20	Universität Erlangen- Nümberg	3D diffraktive Elemente durch direktes Femtosekunden- Laserschreiben	Räumliche Formung von gepulster Laserstrahlung	2020-2023	Lehrstuhl für Photonische Technologien (Michael Schmidt)			Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH) (2.6 - Sachbeihilfen)
	x	Т			Τ		21	Universität Erlangen- Nürnberg	Einzelschuss Röntgen- Phasenkontrast Abbildung von dichten Plasmen	Dichtegradientenbestimmung von Highenergy density Plasmen. Relevant für Target Studien bei ICF.	2020-2023	Lehrstuhl für Physik (Stefan Funk)			Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
		x	x		×		22	Universität Erlangen- Nümberg	Verschiedenste Projekte im Bereich der Röntgenastronomie, Plasmadiagnostik von Röntgenstrahlung und relevante Atomphysik	Theorie der Plasmadiagnostik von Röntgenstrahlung, Strahlungstransport, atomphysikalische Messungen für Linien, die für die Fusionsforschung relevant sind; Modellierung von Sensoren für Röntgenstrahlung	seit 2006 durchgehend Projekte	Lehrstuhl für Astronomie und Astrophysik (J Wilms); Professur für Multiwellenlängenastrono mie (Sasaki)	Lawrence Livermore; National Laboratory, Europäische Weltraumagentur, Max-Planck Institut für Kemphysik, GSI, Harvard-Smithsonian Center for Astrophysics, IRAP Toulouse u.a.		Messungen an Bessy, Petra-II, weitere Beschleuniger.Mittelgeber: ESA, DLR
					×		23	Universität Erlangen- Nürnberg	Wasserstoffversprödung in Strukturwerkstoffen	Wasserstoffversprödung in Strukturwerkstoffen	Seit 2018	Lehrstuhl für Werkstoffwissenschaften Allgemeine Werkstoffeigenschaften (Peter Felfer, Mathias Göken)			Mittelgeber: ERC, KME, DFG
	x						24	Universität Erlangen- Nümberg	Charakterisierung von Werkstoffen mittels Neutronen	Neue Werkstoffe für Hochtemperaturanwendungen; Wasserstoffversprödung in Strukturwerkstoffen	2019-2022, 2022- 2025	Lehrstuhl für Werkstoffwissenschaften Allgemeine Werkstoffeigenschaften (Mathias Göken; Steffen Neumeier)	FRM II / TUM, Garching		Mittelgeber., BMBF
	x				×		25	Universität Erlangen- Nümberg	Funktionsspezifische ionische Flüssigkeiten und ihre Gruppe- 10-Metall- Koordinationskomplexe für die Grenzflächen-unterstützte Katalyse	Radiochemie, Katalyse an flüssigen Grenzflächen	2021-2024	Lehrstuhl für Anorganische und Allgemeine Chemie (Karsten Meyer)			Mittelgeber: DFG / Sonderforschungsbereich (SFB)
	x				×	x	26	Universität Erlangen- Nürnberg	Spektroskopische Charakterisierung von f-Element Komplexen mit soft donor- Liganden (f-Char)	Radiochemie, Katalyse an flüssigen Grenzflächen	2020-2023	Lehrstuhl für Anorganische und Allgemeine Chemie (Karsten Meyer)	Forschungszentrum Jülich / Research Centre Jülich (FZJ), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Karlsruhe Institute of Technology (KIT)		Mittelgeber: Bundesministerium für Bildung und Forschung (BMBF)
				x	x	×	27	Universität Erlangen- Nümberg	Palladium Recovery for CO2 VALorisation	Radiochemie, Nuklearradiation	2024-2028	Lehrstuhl für Anorganische und Allgemeine Chemie (Karsten Meyer)	Orano Support / Orano Recyclage, Commissariat à l'Energie Atomique et aux Energies Atternatives, PRODEVAL SAS, ECHEMICLES Zártkörűen Működő Részvénytársaság, Centre National de la Recherche Scientifique CNRS, JRC - Joint Research Centre- European Commission		Mittelgeber: European Commission/ HORIZON- EURATOM-2023-NRT-01-09: Nuclear and radiation techniques for EU strategic autonomy, circular, economy and climate change policies
x	П	Т			Т	Т	28	TU München	BMBF Förderlinie Fusion, Modul A Basistechnologien	Herstellung von Magnetspulen für Stelleratortechnologie	> 3 Jahre	FRMII	IPP	TEVA, von Ardenne GmbH (keine Kennzeichnung)	Antrag eingereicht, in Begutachtung
x							29	TU München		Positron annihilation spectroscopy zur Frage wie Tritium in Stahl und dotiertem Wolfram aufgenommen wird und wie Strahlenschäden die Stärke von Schweißnähten und anderen "joints" beeinflusst	> 3 Jahre	FRMII	IPP	The modern EMIN	Antrag eingereicht, in Begutachtung
x							30	TU München	Nachwuchstalente	Messung des durch Plasmen emittierten Spektrums im Bereich VUV und XUV innerhalb eines magnetischen Confinement Reaktors	> 3 Jahre	FRMII	IPP		Antrag eingereicht, in Begutachtung
x	x		x				31	TU München	B Test und Messinfrastruktur	Charakterisierung von Fusionswerkstoffen (Wolfram Legierungen, Stähle) mittels Positronen und Neutronen	> 3 Jahre	FRMII	IPP		Antrag in der Elnreichungsphase
			x		×		32	TU München	Munich School for Data Science	Anwendung von modernen Methoden aus den Datenwissenschaften und der Künstlichen Intelligenz auf die Plasmaphysik	seit 2018	HonProf. Dr. Frank Jenko, Prof. Dr. Hans Bungartz, u.v.a.m.	LMU München, Max-Planck-Institut für Plasmaphysik, Helmholtz-Zentrum München, DLR LRZ, MPCDF		

Magnet	Laser	Simulation	Planung	Diagnostik	Energietechnik + Energiesysteme	stige Kerntechnik	Brennstoff (-Kreislauf)	Sonstiges	unklar		HOCHSCHULE	Bezeichnung / Beschreibung	Einsatzbereiche mit Fusionsbezug	bestehend seit / geplant ab	Verantwortliche / Beteiligte in der Hochschule	Externe Partner: Hochschulen und AUFE sowie andere öffentliche Organisationen	Externe Partner: Privatwirtschaft und private Stiftungen (Vertraulichkeit: grün=Bericht; gelb=kommissionsintern, rot=geheim)	ggf. weitere Erläuterungen
x	,	x								1	TH Würzburg- Schweinfurt	Hochspannungslabor mit für den Fachhochschulbereich einzigartiger Ausstattung	Isoliersysteme für Fusionsmagnete	seit vielen Jahrzehnten	Prof. DrIng. Markus H. Zink, Prof. DrIng. Ebrahim Rahimpour		Bilfinger Noell	Derzeit keine aktive Forschung oder Projekte
	x									2	LMU	Laser-Infrastruktur	Eine Experimentierkammer wird zusammen mit der Marvel Fusion GmbH entwickelt, installiert und für Grundlagenforschung zur Verfügung gestellt.	seit 2022	Prof. KarschProf. Schreiber		Marvel Fusion GmbH	Kooperationsvertrag
	x									3	LMU	Laser-Infrastruktur	Optimierung von Lasergetriebenen Betatron- und Thomsonquellen im Hinblick auf Targets	seit 2018	Prof. Karsch	University of Oxford, TUM	Trumpf Scientific Lasers	
	Т	×		П	\neg	T	T		T	4	Universität Bayreuth	Rechencluster	Turbulenz in Fusionsplasmen mit magnetischem Einschluss	2010	Prof. A. G. Peeters			
							T			5	Universität Bayreuth	KeyLab Electron and Optical Microscopy	Hochauflösende Elektronenmikroskopie	2016 (Gründung BPI)	Prof. André Gröschel	FAU Erlangen-Nürnberg, Universität Würzburg		KeyLab des Bayerischen Polymerinstituts (BPI)
	\top			П			1			6	Universität Bayreuth	Nordbayerisches NMR Zentrum (NBNC)	Strukturelle Veränderungen auf einer Mesoskala	2018	Prof. Jürgen Senker, Prof. Stephan Schwarzinger			Zentrale wissenschaftliche Einrichtung der Universität Bayreuth
	х	x x					T			7	Universität Augsburg	Experimente zur Plasma- Material-Wechselwirkung	Untersuchung der Plasma-Wand- Wechselwirkung	seit 2008	Prof. DrIng. U. Fantz	Max-Planck-Institut für Plasmaphysik (IPP)		
	х	ĸ		x			T			8	Universität Augsburg	Plasmadiagnostiken	Diagnostik der Plasmarandschicht	seit 2008	Prof. DrIng. U. Fantz	Max-Planck-Institut für Plasmaphysik (IPP)		
	х	ĸ								9	Universität Augsburg	Mechanisches Prüflabor	Untersuchung mechanischer Materialeigenschaften	seit 2009	Gem. Labor am MRM, mehrere Professoren			
	x	ĸ								10	Universität Augsburg	Rutherford Backscattering Spektroskopie, 2 MV-Anlage, High Voltage Engineering Europe B.V.	Materialanalyse	seit 2000	Prof. M. Albrecht			
	х	ĸ								11	Universität Augsburg	Transmissionselektronenmikro skopie (TEM), JEOL- NeoArm200F mit EDS, EELS Analytik	Materialanalyse	seit 2019	Prof. M. Albrecht, gemeinsame Nutzung von Arbeitsgruppen am IfP/MRM			
	х	ĸ								12	Universität Augsburg	Rasterelektronenmikroskopie, Merlin mit EBSD, EDS Analytik, Zeiss GmbH,	Materialanalyse	seit 2016	Prof. M. Albrecht			
\rightrightarrows	Х	ĸ				\perp	\Rightarrow	_	4	13	Universität Augsburg	Rasterkraftmikroskopie	Materialanalyse		Prof. M. Albrecht			
	х	ĸ								14	Universität Augsburg	Röntgendiffraktometrie, Rigaku Smartlab 9kV, Drehanode mit 2D Detektor		seit 2022	Prof. M. Albrecht			
	х	ĸ							x	15	Universität Augsburg	Fokussierte lonenstrahlli- thographie-Anlage, Crossbeam 500, Zeiss GmbH	Präparation von TEM Lamellen zur Materialanalyse	seit 2019	Prof. P. Gegenwart, gemeinsame Nutzung von Arbeitsgruppen am IfP			
	х	x x					x			16	Universität Augsburg	Heliumanlage	Versorgung mit flüssigem Helium	seit 2000	PD Dr. Hans-Albrecht Krug von Nidda			
		x								17	Universität Augsburg	Hochleistungsrechencluster LICCA (Linux Compute Cluster Augsburg)	Numerische Simulationen	seit 2023	Dr. Markus Zahn (Rechenzentrum)			
		x								18	Universität Würzburg	Rechencluster Julia2	Training von Deep Learning Modellen zur Beschleunigung physikalischer Simulationen		Betrieb durch Rechenzentrum der JMU / Beteiligte: Prof. Andreas Hotho / Prof. Ingo Scholtes / Prof. Karl Mannheim / Dr. Christian Fromm			Aktuell ausgestattet mit 163 GPUs und mehr als 6000 CPU-Kernen, Gesamtinvestitionssumme von ca. 4 Mio. EUR, kofinanziert durch CAIDAS-Mitglieder und DFG Grossgeräteantrag
									x	19	Universität Würzburg	Institut für nachhaltige Chemie & Katalyse mit Bor (ICB)	Synthese und Charakterisierung (Bor- haltiger) Materialien für den Einsatz in Fusionsprozessen	seit 2021	Prof Holger Braunschweig, Prof Maik Finze			Forschungsbau nach § 91b; 1500 m² Hauptnutzfläche für Laboratorien und Messräume

x						20	Universität Würzburg	Labor für Röntgenmikroskopie	Untersuchung von fusionsrelevanten Materialien		Prof. Randolf Hanke (em.)	Fraunhofer IIS (Entwicklungszentrum Röntgentechnik EZRT)		Minutzung des Labors im Verfahren zur NF Hanke, Forschungsschwerpunkt des Fraunhofer IIS liegt auf höchstauflösenden Röntgenmethoden im Mikro- und Nanometerbereich. Aktuell stehen nierfür fünf Röntgensysteme zur Verfügung sowie eine gute Anbindung ans ESRF (BM18) und DESY. u.a. Diagnosetechnologie für die Laserfusions- Targets für das National Lawrence Livermore Lab (Durchsetzung der Gruppe gegen weltweite Konkurrenz im Vergleichstest)
)	c	21	Universität Würzburg	Umweltforschungsstation (Schneefernerhaus /Zugspitze)	Überwachung der Umweltradioaktivität und Öffentlichkeitsarbeit zu natürlichen Quellen ionisierender Strahlung	seit 2022	JMU ist Konsortialmitglied vertreten durch Prof. Tobias Ullmann (Earth Observation Research Cluster)	UFS Konsortium		Test von Detektoren. Umweltphysik. Studentische Ausbildung. Monitoring von atmosphärischer Radioaktivität technischen und natürlichen Ursprungs
	x	x				22	Universität Erlangen- Nürnberg	Laborarbeiten / Forschung an Electron Beam Ion Traps	allgemeine Forschung und Anwendung zur astrophysikalischen Plasmadiagnostik und Diagnostik von Plasmen im kernfusionsrelevanten Temperaturbereich (10°6K und höher); Arbeiten zur atomphysikalischen Liniendiagnostik, einschließlich Verbesserung von Referenzlinien im Röntgenbereich, die für die Diagnostik relevant sind	bestehend	Professur für Multiwellenlängenastronomie (Manami Sasaki); Lehrstuhl für Astronomie und Astrophysik (Jörn Wilms)	Lawrence Livermore National Laboratory, Max Planck Institut für Kernphysik	п. а.	
		:	x			23	Universität Erlangen- Nürnberg	Prüfanlagen für die elektrische Energieversorgung	indirekte Unterstützung der Forschung und Entwicklung einzelner Komponenten für die Kernfusion, z.B. spezielle Kabel, Magnete, Isolierstoffe		Dieter Braisch (Mitarbeiter an Lehrstuhl für Elektrische Energiesysteme von Matthias Luther)	derzeit n. a.	В	
			T	,	c	24	Universität Erlangen- Nürnberg	Hochdrucklabor	Beladung von Werkstoffen mittels Wasserstoffes	bestehend	Prof. Peter Felfer (Lehrstuhl Allgemeine Werkstoffeigenschaften)	n. a.	n. a.	
)	ĸ	25	Universität Erlangen- Nürnberg	Labore mit Zulassung für Arbeiten mit radioaktiven Elementen	Uranchemie	seit 2006, neue Labore geplant ab 2029	Lehrstuhl für Anorganische und Allgemeine Chemie (Karsten Meyer)	n. a.	n. a.	
				Τ		26	Universität Erlangen- Nürnberg	ElDrive-Center	Fertigungslabor für Magnet- Wicklungen	seit 2011	Prof. DrIng. Jörg Franke			
x						27	TU München	FRM II	Intensivster Testsrahl für schnelle Neutronen, Intensivster Positronenstrahl, Materialcharakterisierung, führende Diffraktion- und Spektroskopie mit Neutronen zur Charakterisierung von fusionsrelevanten Materialien und physikalischen Vorgängen, Erfahrung Tritiumumgang, Lithiumforschung, Betrieb kerntechnische Anlage, Thermohydraulische Loops für verschiedene Anwendungen in der Energietechnik	seit 2004 bis heute		FZJ, Hereon, Max-Planck Gesellschaft, Universität der Bundeswehr München, 10 weitere deutsche Universitäten, Paul Scherrer Institut (Schweiz)		www.frm2.tum.de;_www.mlz-garching.de
x						28	TU München	Schwerionenbestrahlung	Bestrahlungseinrichtung am ATLAS- Hochfluss- und Hochenergie Ionenbeschleuniger am Argonne National Lab (ANL); Experimentelle Simulation von Strahlenschäden in Metallen durch schnelle Neutronen mittels Schwerionen	Von 2006 bis 2020: Eigener Ionen- Beschleuniger der TUM; im Jahr 2000: Umzug der Bestrahlungs- einrichtung ans ANL (ATLAS- Beschleuniger); Nutzung bis heute	ZWE FRM II, Arbeitsgruppe Brennstoffentwicklung	LMU, ANL, IPP		
x						29	TU München	RCM	Radiochemie München, Tritium Chemie, Lithium Chemie, Heiße Zellen, Charakterisierung von radioaktiven Materialien / Abfälle	ca. seit 1960	тим	Hoheitliche Aufgaben, Bundes- und Landesbehörden, TÜV, 		Umfangreiche AtG und StrlSchG, Große Erfahrung bei Entsorgung

	x					30	TU München	Lehrstuhl Prof. Macian, Nukleartechnik	Thermohydraulisches Testlabor, Computersimulation von fusionsrelevanten Fragestellungen		Prof. R. Macián-Juan, Dr. Christian Reiter	McMaster University hat ähnlichen Testloop; TUM- und McMaster-Labor werden komplementär genutzt.	Größeres eigenständiges Labor mit entsprechender Infrastruktur, thermohydraulischer Testloop, Charakterisierungsmethoden
x						31	TU München	Lehrstuhl Prof. Kienberger, Laserphysik	Betrieb von mehreren Hochleistungslasern für Kurzzeitspektroskopie	Seit den 1960er Jahren führend für Laser- und Kurzzeitspektrosko pie	Prof. R. Kienberger	Als führendes Labor im Gebiet der Kurzzeitspektroskopie im Austausch mit allen relevanten Wettbewerbern	
x						32	TU München	Tandem Beschleuniger (MPI für Plasma Physik); Mit NRA, RB, PIXE, ERDA Messeinrichtungen	Quantitative Oberflächenanalyse	seit Jahren	Prof. R. Neu	MPI für Plasmaphysik, EUROfusion	
х						33	TU München	Wärmeflussteststand	Belastungstests von Materialien und Komponenten bis 80 MW/m² (Wasserstoff Strahl)		Prof. R. Neu	MPI für Plasmaphysik, EUROfusion	
x						34	TU München	Rasterelektronenmikroskopie Labor (3 REMs (alle mit EDX, sowie 2xFIB 1xEBSD, 1xWDX)	Bildgebende Oberflächenanalyse	seit Jahren	Prof. R. Neu	MPI für Plasmaphysik	
X		T		\top		35	TU München	Metallographielabor	Oberflächen- und Gefügeanalyse	seit Jahren	Prof. R. Neu	MPI für Plasmaphysik	
					х	36	TU München	Thermische Analyseeinrichtungen	Wärmebehandlung, Thermische Desorption, Laser-Flash		Prof. R. Neu	MPI für Plasmaphysik	
х						37	TU München	Mikro-/Oberflächenanalytik (AFM, XPS, XRD)	Quantitative Oberflächenanalyse	seit Jahren	Prof. R. Neu	MPI für Plasmaphysik	