Bayerisches Landesamt für Umwelt

<section-header>

Erkundungsprogramm Selten Erd Elemente Bayerisches Landesamt für Umwelt

Selten Erd Elemente als Beifang sedimentärer Lagerstätten

Erkundungsprogramm Selten Erd Elemente

> Bearbeiter: E. Linhardt, A. Gebhardt

96 Seiten, 80 Abbildungen, 30 Tabellen, Augsburg 2014

UmweltSpezial

Impressum

Selten Erd Elemente als Beifang sedimentärer Lagerstätten Erkundungsprogramm Selten Erd Elemente

Herausgeber: Bayerisches Landesamt für Umwelt (LfU) Bürgermeister-Ulrich-Straße 160 86179 Augsburg Tel.: 0821 9071-0 Fax.: 0821 9071-5556 E-Mail: poststelle@lfu.bayern.de Internet: www.lfu.bayern.de

Bearbeitung/Text/Konzept/Redaktion: LfU, Referat 105, Elmar Linhardt, Anja Gebhardt

Bildnachweis: Bayerisches Landesamt für Umwelt

Stand: Februar 2014

Diese Druckschrift wurde mit großer Sorgfalt zusammengestellt. Eine Gewähr für die Richtigkeit und Vollständigkeit kann den noch nicht übernommen werden. Sofern in dieser Broschüre auf Internetangebote Dritter hingewiesen wird, sind wir für deren Inhalte nicht verantwortlich.

Inhaltsverzeichnis

1	Zielsetzung	5
2	Sachstand	6
2.1	Projektanlass und Projektinhalt	6
2.2	Bisheriger Kenntnisstand zu Selten Erd Elementen	6
2.3	Übersicht zur Stratigraphie der Erkundungsgebiete	8
2.4	Petrographische Beschreibung der untersuchten Sandrohstoffe	8
2.5	Detailbetrachtung zur aktuellen Lagerstätten-Situation	9
3	Durchgeführte Arbeiten	11
3.1	Geländebefahrung und Probennahme	11
3.2	Auf- und Vorbereitung der Proben, Sieb- und Schlämmanalytik, Dichtetrennung	16
3.3	Mineralogie und Geochemie	17
3.4	Auswertung der Analytik	18
4	Ergebnisse	19
4.1	Lithostratigraphische Detailbetrachtung hinsichtlich der Schwermineralogie und Geochemie	19
4.1.1	Allgemeines	19
4.1.2	Buntsandstein	21
4.1.3	Sandsteinkeuper	26
4.1.4	Sandsteinkeuper, quartärzeitlich umgelagert	31
4.1.5	Rhätolias	36
4.1.6	Dogger	41
4.1.7	Kreide	46
4.1.8	Vergleich der stratigraphischen Einheiten	51
4.2	Lagerstättenpotenzial aller Gewinnungsstellen	51
4.2.1	Aktuelle Gewinnung	51
4.2.2	Bestand Schlämmteiche und Absetzbecken	52
4.3	Schwermineralkonzentrate als SEE-Rohstoffe – mineralogische Bewertung	53
4.4	Zusätzliches Potenzial der abgetrennten Schwermineralkonzentrate	54
4.5	Anlagentechnik	55
5	Vorräte, Rohstoffe und Wirtschaftlichkeit	56
5.1	Rohstoffpotenzial bei Ausschöpfung aller im Zuge der Regionalplanung und der Raumordnung genehmigten Flächen	56
5.2	Positiv-Kriterien der Beifang-Gewinnung aus vorhandenen Abbaustellen	60
5.3	Negativ-Kriterien für die Beifang-Gewinnung	61
5.4	Nutzung des Schwermineralpotenzials von Schlämmteichen	61
5.5	Gesamtabwägung der Wirtschaftlichkeit	61

6	Prognose	64
7	Zusammenfassung	65
8	Literatur	66
Abbild	ungsverzeichnis	68
Tabell	enverzeichnis	72

1 Zielsetzung

Aufgrund immer neuer verfahrenstechnischer Einsatzmöglichkeiten der Selten Erd Elemente (SEE) im Bereich der Hochtechnologien bei gleichzeitig rapide steigendem Bedarf sowohl in den Industriestaaten als auch in den Schwellenländern stehen diese Metalle zunehmend im Fokus der Wirtschaft, Politik und Forschung. Demgegenüber wird diese Metallgruppe seit Jahren nach strategischen Gesichtspunkten und damit zum wirtschaftlichen Nachteil der sie benötigenden Branchen gehandelt.

Die vornehmlich durch China künstlich herbeigeführte Rohstoffverknappung auf den Weltmärkten führt gezwungenermaßen zu einem Umdenken bei der Suche nach geeigneteren Lagerstätten in langfristig stabilen Förderländern bzw. auch zu weiterführenden Anpassungsstrategien auf der Sekundärseite (durch Materialeffizienz, Substitution und Recycling).

Im Sinne einer mittel- bis langfristig gesicherten Versorgung mit diesen Rohstoffen könnten daher künftig auch kleinere Lagerstätten zur Primärversorgung an Bedeutung gewinnen und ins wirtschaftliche Interesse von potenziell fördernden sowie verarbeitenden Betrieben rücken.

Dazu soll diese Untersuchung die Grundlage bilden und zeigen, wie durch nachhaltigen Umgang mit bayerischen Lagerstätten bislang nicht berücksichtigte, eher störende Beimengungen der Sand- und Kaolinvorkommen wirtschaftlich mitgenutzt werden können und ob dadurch künftig die Abhängigkeit von politisch instabilen Rohstoffversorgern insgesamt gesenkt werden kann.

Ursprüngliches Ziel der Untersuchungskampagne war es, grundlegende Informationen über die Größenordnung von Schwermineral-Anteilen in Sandsteinvorkommen des Buntsandstein und des Keuper, ihre mineralogische Zusammensetzung und Gehalte an verwertbaren Metallen (vor allem SEE) der in den Untersuchungsräumen im Abbau stehenden Sand- und Kaolinvorkommen zu erhalten, und über mineralogisch-rohstoffkundliche bzw. geochemische Untersuchungen deren Nutzbarkeit zu beurteilen.

Insgesamt soll mit diesem Teil-Projekt "SEE I" das Vorhandensein und die Größenordnung des rohstofflichen SEE-Potenzials von Schwermineralkonzentraten erarbeitet werden, die bei der großtechnischen Gewinnung und Aufbereitung von Sand und Kaolin in vorhandenen Gewinnungsbetrieben als Beifang anfallen und potenziell gewinn- bzw. vermarktbar sind.

2 Sachstand

2.1 Projektanlass und Projektinhalt

Mürb- und "Fels"-Sandsteine (und die daraus entstandenen, quartärzeitlich umgelagerten Äquivalente), die sich zu unterschiedlichen Erdzeitaltern als terrestrische sowie als Meeres- Ablagerungen gebildet haben und sich vielfach direkt aus einem verwitterten und abgetragenen "kristallinen Hinterland", dem sog. "Alten Gebirge" ableiten, werden in Bayern in vielen verschiedenen Lagerstätten abgebaut. Hier ist der Sand, der für vielfältige Verwendungsmöglichkeiten im Bausektor, für die Feuerfest- und Glasindustrie sowie für die Chemiebranche gewonnen wird der unternehmerische Schwerpunkt der Abbautätigkeit.

Daneben erfolgt in Bayern ein im großen Stil betriebener Abbau kaolinisierter Feldspatsandsteine und Arkosen des Buntsandstein zum Zweck der Kaolingewinnung.

In beiden Fällen werden oft in großtechnischen, teilweise sehr spezialisierten Anlagen die so gewonnenen Rohstoffe aufbereitet, gewaschen, nach Korngrößen getrennt, sortiert und dadurch – besser – vermarktbare Korngemische hergestellt oder daraus spezielle Industrieminerale isoliert.

Im Zuge dieser Aufbereitung anfallende, nicht direkt verwertbare, störende oder auch bislang nicht bekannte bzw. nicht untersuchte Stoffe werden dabei abgetrennt und gehen überwiegend ungenutzt und "unbemerkt" als Aufbereitungsabgänge in die Abbaue oder auf Halden und in Schlämmteiche oder Absetzbecken zurück.

Mit Sondermitteln und im Auftrag des Bayerischen Staatsministeriums für Wirtschaft, Infrastruktur, Verkehr und Technologie wurden überwiegend in Abbau befindliche Gewinnungsstellen in Nordbayern untersucht. Durch das Referat "Wirtschaftsgeologie, Rohstoffe" wurden dazu die Abbaue mittels Schlitz- und Haufwerksbeprobung umfassend dokumentiert, von den 110 gewonnenen Proben mittels Sieb- und Schlämmanalytik sowie mittels Dichtetrennung die Schwerminerale quantitativ abgetrennt, ihre verwertbaren Gehalte unter besonderer Berücksichtigung der Selten Erd Elemente bestimmt und schließlich mit mineralogisch-geochemischen Analysendaten zusammengefasst und ausgewertet.

Sämtliche raumbezogenen, stratigraphisch-petrographischen sowie mineralogisch-geochemischen Daten der Untersuchungen wurden nach erfolgter Bemusterung, Beprobung und Analytik in das Bodeninformationssystem (BIS) des LfU eingepflegt.

2.2 Bisheriger Kenntnisstand zu Selten Erd Elementen

Die Selten Erd Elemente (SEE, engl. REE) Cer (Ce), Lanthan (La), Praseodym (Pr), Neodym (Nd), Promethium (Pm), Samarium (Sm), Europium (Eu), Gadolinium (Gd), Terbium (Tb), Dysprosium (Dy), Holmium (Ho), Erbium (Er), Thulium (Tm), Ytterbium (Yb), Lutetium (Lu) sowie Yttrium (Y) und Scandium (Sc) gelten aus geochemischer Sicht im allgemeinen als immobil und sind weitgehend unempfindlich gegenüber chemischen Stoffmobilisationen, wie sie beispielsweise durch besondere geologische Prozesse (Diagenese, Verwitterung, Metamorphose) hervorgerufen werden. Sie treten in eigenständigen Mineralen auf, wie Bastnäsit CeFCO₃, Cerianit (Ce, Th)O₂, Thorianit ThO₂, Xenotim (Y, Yb)PO₄ oder Monazit CePO₄, wobei Cer durch andere SEE (La, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) sowie durch Uran (U) und Thorium (Th) substituiert werden kann. Der primäre Bildungsraum dieser Minerale liegt überwiegend in plutonisch-magmatischen Gesteinskörpern. Als Seltenerdelement-Fänger in diesem geologischen Bildungsmilieu gelten daneben auch die (Schwer-) Minerale Apatit, Allanit, Granat und Zirkon (DEER, HOWIE & ZUSS-MAN 1980). Viele der spezifisch schweren SEE-Minerale sind zudem mechanisch stabil und damit weitgehend verwitterungsresistent. Sie können daher unter Umständen mehrere gesteinsbildende Zyklen (von Verwitterung über Transport zu Sedimentation) überstehen und werden im sedimentären Umfeld als sog. Schwerminerale an geeigneten geologischen Stellen (Seifenlagerstätten; marin, fluviatil oder äolisch) konzentriert.

Verwendet werden die Selten Erd Elemente u. a. für High-Tech-Katalysatoren, Akkus, Supermagnete, Metall-Legierungen, Keramik- und Glaszusätze, Glasfasern, Laser, PC-Speicher (Festplatten), zur Wasserstofflagerung sowie in der Reaktortechnik. Unter anderen enthalten folgende für den Endverbraucher wichtige Produkte Selten Erd Elemente: Fernsehgeräte, Handies, Personal Computer, DVD's, Digitalkameras und Kernspintomographen. Wegen ihrer vielfältigen Einsatzmöglichkeiten im Bereich der sog. Grünen Technologien sind diese "High-Tech-Grundstoffe" zudem Voraussetzung für moderne Automobile (Hybrid- und Elektrofahrzeuge: Magnete, Abgasreinigung, Brennstoffzellen), für Anwendungen der Energie-Effizienz (Kühltechnologien, Leuchtstoffe) sowie für Windenergieanlagen (Generatoren: leistungsstarke Permanent-Magnete).

Neben diesen vielfachen technischen Verwendungen prüft China seit Jahren in mehreren Studien und Praxistests auch die Einsatzmöglichkeiten der Selten Erd Elemente als Wachstumsförderer (Futtermittelzusätze) sowie als Düngemittel. Neuere wissenschaftliche Arbeiten zu diesem Themenbereich werden seit 2000 auch an der LMU München durchgeführt (KNEBEL 2004; SCHÖNE 2009).

BERGER (1979) weist erstmalig auf die im Mittleren Burgsandstein Bayerns vorherrschenden Zirkon-Monazit-Assoziationen in der Schwermineralfraktion hin, wobei sich nennenswerte primäre Anreicherungen in Form von lateral und vertikal aushaltenden Seifen jedoch unter den paläogeographischen Umständen offenbar nicht ausbilden konnten. Erst durch quartärzeitliche Umlagerungen (fluviatil bzw. äolisch) verwitterter Keupersandsteine wurde lokal der Schwermineralanteil auf meist 1 Vol-% in den aufliegenden Flugsanddecken erhöht (äolische Seifen). Ähnliche Anreicherungen von Schwermineralen können demnach auch für aus Burgsandstein abgeleiteten Flusssedimenten angenommen werden (Flussseifen).

KLAUS, KRÖCK & STRÜBEL (1985) beschreiben die Schwermineral-Zusammensetzung von Aufbereitungsabgängen, die im Zuge der Aufbereitung von Kaolin-Roherde im Hirschau-Schnaittenbacher Kaolinrevier entstehen. Die Autoren geben als Größenordnung der akzessorischen (Schwer-) Mineralgehalte ca. 0,7 - 0,9 Gew.-% in der unaufbereiteten Roherde an. Sie zeigen auf, dass bei der Aufbereitung der unterschiedlichsten Produkte diese Schwerminerale bis zu einem gewissen Anteil separiert werden. Das resultierende Schwermineral-Konzentrat enthält demnach Monazit (neben Zirkon) bis zu 8 Vol-% angereichert.

Weitere – systematische – Untersuchungsdaten zu absoluten Schwermineral- bzw. SEE-Gehalten in Sedimentgesteinen Bayerns liegen darüber hinaus bis heute nicht vor.

Auf dieser Informationsgrundlage wurde zunächst geprüft, ob neben den Sedimenten des Buntsandstein und des Burgsandstein (Sandsteinkeuper) weitere Untersuchungsräume in anderen stratigraphischen Einheiten mit entsprechenden Gewinnungsstellen für das Projekt definiert und bearbeitet werden könnten. Als geologische Auswahlkriterien hierfür wurden angewendet:

 Möglichst unreife, terrestrische Ablagerungen oder klastische Sedimente im marin beeinflußten, küstennahen Bereich.

- Verwitterungs- und Abtragungsraum entspricht denudiertem "kristallinen" Hinterland mit möglichst stärker bis stark differenzierten, sauren magmatischen Gesteinen sowie Metamorphiten.
- Daraus ableitbare Sedimente bestehen zu einem möglichst hohen Anteil aus kristallinem Material dieses festländischen Abtragungsschutts und enthalten dadurch auch primär entstandene Schwerminerale.
- Vorhandene Schwerminerale wurden ggf. nachfolgend und zusätzlich durch quartärzeitliche, fluviatil-äolische Prozesse angereichert; dadurch besteht erhöhtes Potenzial an relevanten SEE-Trägermineralen und anderen Schwermineralen in den umgelagerten Gesteinen.

Mit diesem Auswahlverfahren wurden die stratigraphischen Einheiten des Rhätolias, des Dogger β, der Kreide und des quartärzeitlich umgelagerten Keuper als zusätzliche Zielgebiete identifiziert und in die rohstoffkundliche Projektbearbeitung übernommen.

2.3 Übersicht zur Stratigraphie der Erkundungsgebiete

Für die untersuchten stratigraphischen Einheiten werden die folgenden, allgemein gültigen Abkürzungen verwendet:

Mittlerer Buntsandstein	sm
Sandsteinkeuper	kms
Rhätolias	ko/l
Dogger β	bEs
Kreide	kro
Sandsteinkeuper, quartärzeitlich umgelagert	qp, SG

2.4 Petrographische Beschreibung der untersuchten Sandrohstoffe

Unter Verweis auf die umfassende Basisliteratur soll im Folgenden nur ein kurzer Abriss zum paläogeographischen Bildungsort der in Abbau stehenden Sand- und Kaolinlagerstätten sowie zu ihrer petrographischen Gesteinsausbildung gegeben werden.

Buntsandstein: Die Ablagerungen zur Zeit des Buntsandstein sind überwiegend festländisch geprägt. Unter semiaridem bis aridem Klima schütteten weitgefächerte Flusssysteme sowie gelegentliche Schichtfluten Ton, Sand und Gerölle aus den umliegenden Hochgebieten in das Germanische Becken. Die mittel- bis grobkörnigen mürben Sandsteine des Mittleren Buntsandstein sind von gelblich-weißer bis hellrötlicher Farbe und enthalten neben groben Quarz-Geröllen über 10 cm bis 20 % Feldspat, dessen Kaolinisierungsgrad mit Annäherung an das kristalline Liefergebiet zunimmt (WEI-NIG et al. 1984). Die Sandsteine, wobei hier vor allem der Mittlere Buntsandstein gemeint ist, treten in einem schmalen Streifen zwischen Neustadt bei Coburg im Norden und Kemnath im Süden auf. Als Besonderheit sind sie im Raum westlich Weiden und um Hirschau-Schnaittenbach als stark kaolinisierte Sandsteine ausgebildet.

Sandsteinkeuper: Der Sandsteinkeuper wird im Wesentlichen durch die stratigraphischen Einheiten Blasensandstein, Coburger Sandstein sowie Unteren, Mittleren und Oberen Burgsandstein aufgebaut. Die Sandsteinfolgen sind flächenmäßig weit verbreitet und bilden Höhenrücken, Tafelberge und Dachflächen des mittelfränkischen Keupergebietes. Sie umlaufen die Nördliche Frankenalb und finden sich bereichsweise im Bruchschollengebiet östlich der Frankenalb. Petrographisch bestehen die Sandsteine aus kantigen bis kantengerundeten Quarzkörnern, untergeordnet treten Kaolinit und Kalifeldspat auf, wobei sich verschieden feste Sandsteinlagen mit Ton-Schluffsteinlinsen, -lagen (Letten) und über größere Distanz durchhaltenden Lettenhorizonten mit schwankender Mächtigkeit abwechseln. Lokal sind mergelige Lagen, dolomitische Bildungen und Hornsteine eingeschaltet. Charakteristisch für die Sedimente ist ein rascher und starker Fazieswechsel. Die Farbe der Sandsteine variiert von grauen und grünen Tönungen über gelbliche und bräunliche Schattierungen zu rotvioletten und roten Tönen. Die Sandsteine gelten als Abtragungsreste des Vindelizischen Landes (GLASER et al. 2004). Der unsortierte Gebirgsschutt wurde zur Zeit des Mittleren Keuper von Süden her in Form von ausgedehnten Schuttfächern in das Fränkische Becken verfrachtet. Episodische Überflutungen, zeitweise wirksame Flusssysteme und äolische Kräfte gestalteten die vertikal und horizontal rasch wechselnden Sedimentationsbedingungen. Diese äußern sich heute in Kreuzschichtungen, ausgedehnten Lettenbändern und –nestern sowie rinnenartigen Auswaschungen mit Kieslagen an deren Basis. Unter semiariden Klimabedingungen lag das Verbreitungsgebiet des Sandsteinkeuper in einem küstennahen, trockenen Gebiet, welches von Mündungstrichtern fluviatiler Rinnen und episodisch auftretenden Tümpeln durchsetzt war. Im Untersuchungsraum wurden vor allem die mürben Sandsteine des Burgsandstein beprobt.

Rhätolias: Im Oberen Keuper lagen weite Teile Nordbayerns als sandige Deltalandschaft vor, die im Unteren Lias von Norden her vom Meer überflutet wurde (GLASER et al. 2004). Charakteristisch für die Rhät-Lias Übergangsschichten sind zum einen der rasche Fazieswechsel von Tonen zu Sandsteinen sowie der ohne erkennbare Gesetzmäßigkeiten erfolgende Übergang von harten Sandsteinen zu Mürbsandsteinen. Die heller bis kräftiger gelblich gefärbten Sande und Sandsteine liegen größtenteils als Mittelsande vor und bestehen zu über 90 % aus Quarz. Der Rest verteilt sich auf Feldspat, tonige Bestandteile und wenig Glimmer (WEINIG et al. 1984). Abbauwürdige Mürbsandsteine sind hauptsächlich großräumig auf das Vorland der Nördlichen Frankenalb zwischen Coburg und Kirchenthumbach sowie auf einzelne Gebiete bei Sonnefeld, Kulmbach und Bayreuth konzentriert. Die bis 20 m mächtigen Mürbsandsteine werden vor allem im Raum Bayreuth abgebaut.

Dogger β : Die typischen braunen, eisenreichen Sande und Sandsteine des Dogger β (Eisensandstein) sind in der Regel als feine, gut geschichtete Meeressande ausgebildet und wurden von N her mit Meeresströmungen in das Jurabecken weit hineintransportiert. Als Sonderfall neben den stark eisenschüssigen Varietäten gelten die sehr hellen bis weißen Glasssande des Gebenbacher Gebietes, die nahezu eisenfrei sind und fast ganz aus Quarz bestehen (WEINIG et al. 1984).

Kreide: Verantwortlich für die kreidezeitlichen Ablagerungen von Sandsteinen im bayerischen Deckgebirge sind Hebungen im ostbayerischen Kristallinblock. Diese führten im Verlauf des Unterturon (Oberkreide) zur Schüttung großer Sand- und Kiesfächer in das Kreidemeer. Die Sande setzen sich überwiegend aus dem Verwitterungs- und Abtragungsschutt des Grundgebirges zusammen, sie sind von unterschiedlichster Körnung, von schlechter Sortierung und oft auch geprägt von einem starken Fazieswechsel (FREUDENBERGER & SCHWERD 1996).

2.5 Detailbetrachtung zur aktuellen Lagerstätten-Situation

Die Anzahl der im Projekt beprobten Gewinnungsstellen beträgt 56, davon sind 47 aktiv oder zeitweise aktiv, 2 befanden sich zum Zeitpunkt der Befahrung in Entwicklung und weitere 7 waren nicht aktiv bzw. ruhend. Im Buntsandstein wurden damit 11 Gewinnungsstellen befahren, im Mittleren Keuper (Burgsandstein, Blasensandstein und quartär umgelagerter Burgsandstein) 26, im Rhätolias 8, im Dogger β 3 sowie in der Kreide 8 (Tab. 1). Insgesamt wurden aus diesen Gewinnungsstellen 110 Proben gezogen; das Gesamtgewicht betrug ca. 5.500 kg. Davon waren 106 Proben Sande, 4 Test-Proben stammten aus Schlämmteichen. Nach Aufbereitung konnten von 105 Sandproben die abgetrennten Sandfraktionen hinsichtlich Mineralogie und Geochemie analysiert werden. Im gleichen Ana-Iysenumfang konnten von 71 Sandproben die abgetrennten Schluff-Fraktionen untersucht werden. Mit Hilfe der vier Schlämmteich-Proben wurde aus den jeweiligen Schluff- und Tonfraktionen eine mineralogische und geochemische Modellierung von Schlämmteichen der anderen Standorte durchgeführt. Auf Daten-Grundlage von 4 Gewinnungsstellen im Kaolin-führenden Buntsandstein (11 Proben) wurde weiterhin die mittlere Schwermineralzusammensetzung im Hirschau-Schnaittenbacher-Revier modelliert und daraus für 2 zusätzliche, nicht zugängliche Gewinnungsstellen die Schwermineralogie bilanziert (deswegen sind sie auch in Tab. 1 ungenannt).

Nach Selbstauskunft der Betreiber werden die jährlichen Fördermengen zwischen 3.000 t und 400.000 t je Gewinnungsstelle angegeben, im Kaolinrevier von Hirschau-Schnaittenbach liegen die jährlichen Fördermengen bei 1.000.000 t (Wortmeldung Dr. R. HAUS anläßlich 6. IMA-Sitzung, StMWIVT, 2012) bis 2.200.000 t Roherde (Pressemeldung JAHNKE 2012). Für eine anonymisiertnormierte Berechnungsgrundlage wurde für alle Gewinnungsstellen jeweils eine realistische, mittlere Jahresförderleistung von 100.000 t angesetzt. Betriebsspezifische Daten, die im Zuge der Befahrung erhoben wurden, liegen in einer projektbezogenen, internen Datenbank vor.

In rund einem Drittel der befahrenen bzw. berücksichtigten Gewinnungsstellen (von 56 insgesamt 18 bzw. 20 mit Kaolin-Gewinnungsbetrieben) werden Aufbereitungsanlagen zur Reinigung und Kornklassierung der gewonnenen Sand-Rohstoffe bzw. zur Abtrennung und Aufreinigung von Kaolin genutzt, teilweise werden auch zentrale Anlagen zur Aufbereitung des an mehreren Gewinnungsstellen geförderten Materials betrieben. Als jährliche Stoffdurchsätze bei den größeren Sandwäschen werden Größenordnungen zwischen 100.000 t und 600.000 t angegeben.

Die überwiegende Anzahl der untersuchten Betriebe operiert auf ausgewiesenen Rohstoff-Vorranggebieten bzw. auf genehmigten Abbauflächen mit entsprechenden Erweiterungspotenzialen, die vom rohstofflichen Standpunkt aus, bis auf wenige Ausnahmen, eine mittel- bis langfristige Betriebssicherheit gewährleisten. Demzufolge können vor allem die größeren Gewinnungsstellen samt jeweiliger Aufbereitung, die dadurch über größere Zeitspannen (Jahrzehnte) operieren können, als quasi ortsfeste Betriebe gewertet werden.

3 Durchgeführte Arbeiten

3.1 Geländebefahrung und Probennahme

Die Probennahmepunkte in drei Untersuchungsräumen befinden sich in Nordbayern zwischen Ansbach im Südwesten und Kulmbach im Nordosten. Sie liegen auf den Kartenblättern (GK 200) CC6326, CC6334, CC7126 sowie CC7134. (Abb. 1, Tab. 1).

Abb. 1: Arbeitsgebiet mit Untersuchungsräumen.

Nach Luftbildauswertung wurden neben den derzeit ruhenden vornehmlich die in Abbau befindlichen Lagerstätten aus Buntsandstein (Abb. 5), Sandsteinkeuper und quartärzeitlich umgelagerter Sandsteinkeuper sowie Rhätolias (Abb. 6), Dogger β (Abb. 7) und Kreide (Abb. 8) ausgewählt, befahren und beprobt. Als Vorgaben für die Proben waren sowohl ihre stratigraphische Zuordenbarkeit, als auch ihre Repräsentativität für die Lagerstätte (Schlitzproben) und für den unternehmerischen Schwerpunkt (Haufwerksproben), weswegen in der Regel mindestens zwei Proben pro Gewinnungsstelle genommen wurden (Abb. 2 und Abb. 3).

Abb. 2: Schlitzprobennahme.

Abb. 3: Haufwerksprobennahme.

Zudem musste ausreichend Material für alle erforderlichen Analysenschritte (ca. 50 kg je Probe) gezogen werden. Im Bedarfsfall erfolgte im Gelände eine Verkleinerung des Probenvolumens durch Vorabsiebung der Kiesfraktion und gleichzeitiger Bestimmung der Mengenverhältnisse (Abb. 4).

Abb. 4: Vorabsiebung im Gelände.

Tab. 1: Lage der Gewinnungsstellen mit Abbaustatus und Stratigraphie (GK 25) sowie Anzahl der Proben.

CC	BIS - Ohiekt	lace	Koordinat	en	Abbaustatus	Stratigraphie	Prohen
		Lugo	RW	HW	10000010100	olidigidpino	Anzahl
6326	5632AG000001	NW Wellmersdorf	4437009	5574490	aktiv	sm	3
6326	5733AG000025	W Burgstall	4446675	5567918	aktiv	sm	4
6326	5733AG015008	NE Kaltenbrunn	4447085	5569505	ztw. aktiv	sm	2
6334	5935AG000009	Fohlenhof, N Waldau	4466428	5545594	aktiv	sm	3
6334	5935AG015013	W Harsdorf, Pechgraben	4468023	5543193	aktiv	sm	3
6334	6036AG000007	N Görschnitz	4479027	5536085	ztw. aktiv	sm	3
6334	6135AG015007	NW Engelmannsreuth	4473656	5520428	aktiv	kms	3
6334	6135AG000004	E Preußling	4475380	5521108	nicht aktiv	kms	2
6334	6137AG015010	W Köglitz	4494300	5523900	ztw. aktiv	kms	1
6334	6237AG000012	SW Zessau	4493593	5516921	ztw. aktiv	kms	2
6334	6337AG015002	N Tanzfleck	4492900	5500627	nicht aktiv	sm	2
6334	6337AG015008	N Freihungsand	4491201	5500484	aktiv	kro	3
6334	6337AG000034	S Thansüß, Freihung	4495348	5496876	aktiv	sm	3

CC	BIS - Objekt	Lage	e Koordinaten		Abbaustatus	Stratigraphie	Proben
			RW	HW			Anzahl
6334	6338AG015035	N Kohlberg, Schlemm	4502120	5496825	nicht aktiv	sm	3
6334	6338AG000001	SW Brandweiher	4505133	5505094	aktiv	sm	2
6334	6337AG000028	W Steinfels	4499114	5502840	nicht aktiv	sm	3
6334	5935AG000023	S Pechgraben	4467075	5541448	aktiv	ko/l	3
6334	6137AG000015	S Altköslarn	4494492	5520530	ztw. aktiv	kro	1
6334	6137AG000004	SW Hessenreuth	4497328	5518461	ztw. aktiv	kro	1
6334	5834AG015058	SW Niederndobrach	4458570	5554584	ztw. aktiv	ko/l	1
6334	6035AG01515	W Saas	4467425	5531329	aktiv	ko/l	1
6334	6035AG000010	E Forkendorf	4468399	5529778	aktiv	ko/l	1
6334	6035AG000008	N Rödensdorf	4468917	5529732	ztw. aktiv	ko/l	1
6334	6135AG000003	E Bocksrück	4470559	5526437	ztw. aktiv	ko/l	2
6334	6135AG000006	SW Creussen	4417780	5520673	aktiv	ko/l	2
7126	6928AG015002	S Mönchsroth	4380641	5431168	aktiv	kms	1
7126	6831AG000010	NW Mischelbach	4426714	5442951	aktiv	qp, SG	2
7126	6832AG000022	NE Mischelbach	4429570	5444420	aktiv	kms	2
7126	6832AG015003	SW Heinzenmühle	4427644	5444875	ztw. aktiv	kms	1
7126	6832AG000021	N Heinzenmühle	4428074	5445654	aktiv	qp, SG	1
7126	6833AG000014	NW Pyras	4440784	5446854	aktiv	qp, SG	2
7126	6833AG000027	NE Unterrödel	4440649	5447417	aktiv	qp, SG	3
7126	6833AG000020	W Eibach	4441015	5448288	nicht aktiv	kms	1
7126	6633AG000003	W Oberhembach	4444947	5464501	aktiv	kms	2
7126	6831AG000006	Mosbach I	4425518	5449294	nicht aktiv	qp, SG	1
7126	6831AG015001	Mosbach II	4425606	5448773	aktiv	qp, SG	2
7126	6831AG000015	W Georgensgmünd	4426653	5448971	aktiv	qp, SG	1
7126	6832AG015002	Mackenmühle N	4427624	5444481	nicht aktiv	kms	1
7126	6832AG000020	Mackenmühle S	4427563	5444203	ztw. aktiv	kms	1
7126	6928AG000005	S Wittenbach	4382258	5430495	aktiv	kms	1
7126	6829AG000030	Mörlach	4399154	5448964	aktiv	kms	3
7126	6829AG000010	Mörlach N	4398780	5449500	nicht aktiv	kms	1
7126	6829AG015001	W Birkach	4394530	5445873	ztw. aktiv	kms	2
7126	6829AG000003	SW Birkach	4394120	5445220	aktiv	kms	3
7126	6828AG000002	N Weikersdorf	4382447	5443797	aktiv	kms	2
7126	6733AG015007	SW Göggelsbuch	4442102	5453581	in Entw.	ko/l	1
7126	6829AG015002	N Friedrichsthal	4393218	5444334	in Entw.	kms	1
7134	6436AG015020	Laubhof, W Godlricht	4487715	5485230	aktiv	kms	2
7134	6437AG000002	E Großschönbrunn, Barbaragrube	4493525	5493400	aktiv	bEs, kro	3
7134	6437AG015041	SE Großschönbrunn, Kickgrube	4493111	5492503	aktiv	bEs	2
7134	6437AG000007	Atzmannsricht	4490600	5491750	aktiv	bEs	5
7134	6537AG015028	SE Kümmersbruck	4495251	5475031	aktiv	kro	2
7134	6638AG000002	W Freihöls	4500500	5473300	aktiv	kro	2
7134	6536AG015011	E Stifterslohe	4481505	5481530	aktiv	kro	1
7134	6838AG000004	N Trischlberg	4502105	5444678	aktiv	kro	2
7134	6740AG015012	E Mappach	4526209	5457986	aktiv	kro	1
7134	6740AG015012	E Mappach	4526209	5457986	aktiv	kro	1

Abb. 5: Geologische Übersicht mit Lagepunkten der beprobten Gewinnungsstellen im Buntsandstein (angepasster Ausschnitt aus GK500, BAYERISCHES GEOLOGISCHES LANDESAMT 1996).

Abb. 6: Geologische Übersicht mit Lagepunkten der beprobten Gewinnungsstellen im Sandsteinkeuper und quartärzeitlich umgelagerten Sandsteinkeuper sowie im Rhätolias (angepasster Ausschnitt aus GK500, BAYERI-SCHES GEOLOGISCHES LANDESAMT 1996).

Abb. 7: Geologische Übersicht mit Lagepunkten der beprobten Gewinnungsstellen im Dogger β (angepasster Ausschnitt aus GK500, BAYERISCHES GEOLOGISCHES LANDESAMT 1996).

Abb. 8: Geologische Übersicht mit Lagepunkten der beprobten Gewinnungsstellen in der Kreide (angepasster Ausschnitt aus GK500, BAYERISCHES GEOLOGISCHES LANDESAMT 1996).

3.2 Auf- und Vorbereitung der Proben, Sieb- und Schlämmanalytik, Dichtetrennung

In einem ersten Schritt wurden die Rohproben bis zur Gewichtskonstanz getrocknet und das jeweilige Trockengewicht bestimmt. Anschließend wurden mittels Siebmaschine die relevanten Kornfraktionen abgetrennt (Siebeinsätze 63 µm, 125 µm, 250 µm, 500 µm und 1.000 µm; Abb. 9) und gewogen, und schließlich bei diesen Fraktionen mittels Schlämmung und Dekantieren der Tonanteil abgetrennt. Das Verhältnis von Schluff zu Ton (in der Siebfraktion < 63 µm) wurde zudem mittels Sedimentation LfU-intern bestimmt. Je nach Probenmenge lag der Zeitbedarf pro Probe für die Präparationsschritte Trocknen der Originalprobe, Sieben, Schlämmen und Trocknen der geschlämmten Probe sowie für die erforderlichen Wägungsschritte an Teilproben bzw. Kornfraktionen zwischen 6 und 7 Tagen.

Von den so erhaltenen Sieb- und Schlämmfraktionen wurden anschließend aus entsprechenden Proben-Aliquoten im Sink-Schwimm-Verfahren mittels wässriger Natrium-Polywolframatlösung (Dichte 3,0 g/cm³) die Schwerminerale (Dichte > 3,0 g/cm³; BOENIGK 1983) quantitativ in einer Batterie aus 20 Scheidetrichtern (je 250 ml Inhalt) abgetrennt und ihr Gehalt sowohl an den jeweiligen Fraktionen als auch an der Gesamtprobe absolut und prozentual bestimmt (Abb. 10).

Abb. 10: Abtrennung von Schwermineralen mittels Sink-Schwimm-Verfahren.

Wegen der erforderlichen Absolutmenge von mindestens 0,5 g Schwerminerale pro Sand- bzw. pro Schluff-Teilprobe für die nachfolgende mineralogisch-geochemische Analytik mussten – Probenund Fraktionsabhängig – teilweise mehrere Abtrennungsgänge (Ansätze) durchgeführt werden, um diese Zielgröße zu erreichen. Bei den vier Sand-Fraktionen (63-125 µm, 125-250 µm, 250-500 µm, 500-1.000 µm) genügten i. d. R. 2 Ansätze mit jeweils 50 g pro Fraktion und Scheidetrichter (200 g Material insgesamt pro Ansatz), um eine Schwermineralausbeute ≥ 0.5 g (bezogen auf alle zusammengefassten Sandfraktionen) zu erzielen. Zeitbedarf hierbei waren 2 Tage pro Ansatz (1 Tag Sedimentation sowie 1 Tag Filtration, Spül- und Trocknungsprozedur inkl. Wägung).

Zur Abtrennung der Schwerminerale aus der Schluff-Fraktion (> 2 µm und < 63 µm) wurden pro Probe und Ansatz drei Scheidetrichter mit jeweils einer Einwaage von 12,5 g (gesamt 37,5 g Schluff) verwendet. Der Zeitbedarf für einen Ansatz lag bei 5 Tagen (2 Tage Sedimentation sowie 3 Tage Filtration, Spül- und Trocknungsprozedur inkl. Wägung). Lag dabei der Schwermineralgehalt der Schluff-Fraktion schon beim ersten Ansatz unter 0,266 % absolut und hätte daher mittels 5 Ansätzen (gesamt 187,5 g Schluff) die erforderliche Schwermineralausbeute von $\ge 0,5$ g nicht erreicht werden können, wurden keine weiteren Trennungen (wegen des nicht mehr vertretbaren Zeitaufwandes) betrieben.

Im Einzelfall kann jedoch, trotz geringer Schwermineralgehalte (< 0,266 %), der relativ hohe Anteil der Schluff-Fraktion an einzelnen Gesamtproben diesen Umstand über-/ kompensieren, so dass eine Schwermineral-Abtrennung im großtechnischen Stil dennoch nennenswerte Gehalte erbringen würde. Dies wird fallbezogen durch eine Modellierung (Hochrechnung) berücksichtigt.

Die aufgefangenen Filtrationslösungen sowie die Lösungen aus den Spül- und Waschvorgängen mussten parallel zu den Abtrennvorgängen gesammelt und daraus die Schwereflüssigkeit wiedergewonnen werden. Ständig umgesetzt wurden dabei 121 eingestellte Schwereflüssigkeit bzw. die daraus im Zuge der Abtrennungen entstandenen ca. 401 verdünnte Lösungen. Zur Regeneration wurden die Lösungen zunächst mittels mehrstufigem Filtrationsprozess (Stoff-, Papier- und Kohlenstoff-Filter) bis zur Partikelfreiheit aufgereinigt, anschließend im Trockenschrank bzw. auf Kochplatten eingedampft und schließlich wieder auf die Solldichte eingestellt. Der Zeitbedarf um einen Liter Schwereflüssigkeit mit Dichte 3,0 g/cm³ aus ca. 51 Spül- und Waschlösung zu regenerieren betrug ca. 8 Tage.

Alle Aufbereitungs-Schritte sowie die Trennvorgänge mit ihren gravimetrischen und makroskopischen Zwischenergebnissen sind probenbezogen in einer Projekt-Datenbank erfasst.

3.3 Mineralogie und Geochemie

Die Analytik der gezogenen Proben hinsichtlich Geochemie (Haupt-, Neben- und Spurenelemente) mittels emissions- und massenspektrometrischer Analysenverfahren (ICP-OES bzw. ICP-MS) aus einem Schmelzaufschluß (Totalverfahren) sowie hinsichtlich quantitativer Mineralogie mittels Röntgendiffraktometrie (XRD) und Rietveld-Verfeinerung erfolgte LfU-extern.

Die Nachweisgrenzen der Multielementanalytik liegen dabei i. d. R. bei 0,01 Gew.-% für die Hauptelemente, für die Neben- und Spurenelemente werden i. d. R. 1 mg/kg erzielt und bei den SEE im Mittel 0,1 mg/kg erreicht.

Die Quantifizierung der potenziellen SEE-Minerale (Angabe in Massen-Prozent, m.-%) sowie der Begleitminerale in den Schwermineralkonzentraten wurde zunächst mittels Hauptelementgehalten aus der Geochemie (Angabe in Gewichts-Prozent, Gew.-%) LfU-intern plausibilisiert. Absolutfehler der XRD-Gehaltsangaben liegen bei durchschnittlich 5 %, Nachweisgrenzen werden zwischen 0,5 und 3 M.-% angegeben. Analytisch berücksichtigt wurden neben den silikatischen Leichtmineralen Quarz, Alkalifeldspat, Plagioklas und Tonminerale (überwiegend als Kaolinit) die Schwerminerale Goethit, Hämatit, Manganoxid-Minerale (hier nicht näher spezifiziert), Rutil, Anatas, Turmalin, Granat, Epidot (Allanit), Schwerspat (Baryt), Zirkon, Fluor-Apatit, Xenotim und Monazit.

3.4 Auswertung der Analytik

Die Auswertung der in den Schwermineralkonzentraten vorliegenden Stoffgehalte erfolgte auf Basis der geochemischen Gesamtgehalte. In einem selbst entwickelten, speziellen chemometrischen Auswertungsverfahren werden diese Gehalte mit gravimetrischen Kenngrößen aus der Sieb- und Sedimentationsanalytik sowie aus der Dichtetrennung verrechnet und daraus die aus den Schwermineralkonzentraten der jeweiligen Proben gewinnbaren Stoffgehalte entsprechend nachfolgendem Prinzip ermittelt (Abb. 11).

Abb. 11: Schema zur Ermittlung der potenziell ausbringbaren Stoffgehalte aus Schwermineral-Konzentraten.

Die mineralogischen Daten der Schwermineralkonzentrate aus den jeweiligen Schluff- und Sandfraktionen dienten sowohl zur Plausibilisierung der geochemischen Stoffgehalte, wie oben dargestellt, als auch zur Konkretisierung und Quantifizierung der SEE-Träger-Minerale in den unterschiedlichen Sandrohstoffen. Darüber hinaus können bzw. sollen die Daten perspektivisch zur Eingrenzung weiterer, bisher nicht betrachteter Mineral- und Wertstoffpotenziale dienen (Motto: "Welche Minerale muß ich abtrennen, um (maximale) Ausbeuten bei Wertstoff xy erzielen zu können ?").

Weiterhin wurden Schwermineral-Mittelwerte zu stratigraphisch definierten Einheiten sowohl als Summenparameter zur Abschätzung der Güte des Trennverfahrens (Leicht- / Schwerminerale) als auch zur mineralogischen Kennzeichnung der Teilpopulationen gebildet und ausgewertet. Graphische Darstellungen finden sich dazu in den jeweiligen Teilkapiteln 4.1.2 bis 4.1.7. Die zugrundeliegenden Tabellen sind im Anhang (Tab. B-1 sowie Tab. C-1 bis Tab. C-6) aufgeführt.

4 Ergebnisse

4.1 Lithostratigraphische Detailbetrachtung hinsichtlich der Schwermineralogie und Geochemie

4.1.1 Allgemeines

In den nachfolgenden Teilkapiteln werden die Untersuchungsergebnisse der beprobten Lokationen (u. a. Kornverteilung, Schwermineral-Verteilung und -Gehalte, Mineralogie) nicht einzeln, sondern aggregiert nach ihrer Zugehörigkeit zur jeweiligen stratigraphischen Einheit aufgelistet und behandelt. Dies dient der besseren Vergleichbarkeit der Ergebnisse untereinander.

Neben der Angabe der absoluten Konzentration von SEE-Gehalten dient das Verteilungsmuster der Selten Erd Elemente in geologischen Matrizes als wichtige und charakteristische Kenngröße für die Herkunft dieser Proben und erlaubt Rückschlüsse auf die Gesteinsgenese sowie das Umfeld der Proben (LINHARDT & DITTRICH 1999). Es wird im Folgenden als zusätzliches Kriterium zur stratigraphischen Einstufung verwendet.

Aufgrund ihrer Ionenradien und ihrer bevorzugten Wertigkeiten können die SEE andere Elemente in weitverbreiteten, gesteinsbildenden Mineralen substituieren oder in eigenständigen, hier behandelten SEE-Mineralen, auftreten. So ersetzen u. a. die trivalenten SEE Ca²⁺, Y³⁺, Th⁴⁺, U⁴⁺, Mn²⁺ und Zr⁴⁺, die bivalenten SEE (u. a. Eu²⁺) dagegen Pb²⁺, Ca²⁺, Sr²⁺ und Na⁺ in vielen gesteinsbildenden Mineralen. Das wichtigste Werkzeug zur Interpretation von SEE-Daten stellt dabei das sog. Chondritnormalisierte SEE-Verteilungsmuster dar. Als X-Y-Grafik werden die mit aufsteigender Masse angeordneten SEE gegen ihre jeweiligen Konzentrationen in den untersuchten Gesteinen bzw. Mineralen dargestellt. Zur besseren Interpretierbarkeit werden dazu die zuerst unregelmäßigen, gezackt erscheinenden SEE-Häufigkeitsverteilungen (infolge elementspezifischer Fraktionierung der SEE in irdischen Systemen) "geglättet". Dazu werden die ermittelten SEE-Konzentrationen auf externe Bezugssysteme normalisiert, wofür überwiegend kohlige, C-Chondrite dienen, die häufigste Klasse von primitiven, relativ unfraktionierten Meteoriten (LINHARDT & DITTRICH 1999).

Es gilt: SEE normalisiert = Konzentration SEE Probe / Konzentration SEE Chondrit (GI.1)

Nach diesem "mathematischen" Bearbeitungsschritt entstehen SEE-Verteilungsmuster (normalisierte Häufigkeiten der SEE) mit "typischen" und "glatten" Kurvenverläufen, die zur Untersuchung von Modellen über die Bildungsgeschichte von Gesteinen oder Gesteinsserien verwendet werden (z. B. Herkunft von Gesteinen aus einer oder mehreren Quellen, Zusammensetzung der Quelle(n); HENDERSON 1984).

Als eine wichtige, praktische Anwendung können auf Grundlage "eindeutiger" Verteilungsmuster zweifelhafte stratigraphische Einstufungen von Probenmaterial bereinigt werden und Proben somit der "richtigen" Gruppe zugeordnet werden. Im mehrfach aufgetretenen Fall einer strittigen Herkunft von Haufwerksproben in Gewinnungsstellen mit Material unterschiedlichen geologischen Alters (unterschiedliche Stratigraphie, unterschiedliche Liefergebiete bzw. unterschiedliche Genese) konnte so die Gruppenzugehörigkeit (Dogger β bzw. Kreide) zweifelfrei geklärt werden.

Tab. 2: Häufigkeiten (Konzentrationen, in ppm) der SEE in kohligen, chondritischen Meteoriten (C 1). Quelle: EVENSEN et al. (1978), in: HENDERSON (1984); sie entsprechen den Normalisierungsfaktoren für unten folgende Grafiken (siehe Abb. 14, 24, 34, 44, 54 und 64 sowie Gl. 1).

La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
0,2446	0,6379	0,09637	0,4738	0,1540	0,05802	0,2043	0,03745	0,2541	0,05670	0,1660	0,02561	0,1651	0,02539

Zur mineralogischen Beschreibung und zum Vergleich der stratigraphischen Einheiten untereinander (auf Grundlage der abgetrennten Schwermineralkonzentrate) wurden nachfolgende Summenparameter gebildet und als Mittelwerte für die jeweiligen Gruppen gewertet.

Die Gruppe "Leichtminerale" enthält die Silikate Quarz, Feldspäte, Glimmer, Tonminerale (überwiegend) sowie Calcit (selten). Diese Minerale lagen vermutlich als Verwachsungen bzw. als Umwachsungen der Schwerminerale vor und konnten methodisch bedingt nur unvollständig von den Schwermineralen abgetrennt werden. Die Gruppe der "Schwerminerale" besteht aus den SEE-führenden Mineralen, den Titan-Mineralen, den Eisen-Mineralen sowie teilweise aus Granat, Turmalin, Baryt und Mangan-Mineralen (hier nicht näher spezifizierte Mn-Oxide). Der mittlere Abtrenngrad (Gew.-%) beschreibt dabei den Anteil der abgetrennten Schwerminerale gegenüber den mitgewonnenen Leichtmineralen aller Proben (siehe Teilkapitel 4.1.2. bis 4.1.7 sowie Tab. B-1, Anhang). In der Gruppe der "SEE-Minerale" sind Zirkon, Epidot (Allanit), Fluor-Apatit, Monazit und Xenotim beinhaltet. Anatas und Rutil beschreiben die Gruppe der "Titan-Minerale". Die Gruppe "Eisen-Minerale" besteht aus Goethit und Hämatit. Die Mineral-Gruppe "Rest" enthält Granat, Turmalin, Baryt, Mn-Oxide sowie die "mitgewonnenen" Leichtminerale als nicht verwertbare Bestandteile; sie bildet jeweils die Differenz zur gesamten Schwermineralfraktion (bezogen auf 100 %). Die mineralogischen Einzelwerte sind in Tab. A-1 und A-2 (Anhang) aufgelistet, die mineralogischen Mittelwerte zu den ausgewerteten stratigraphischen Einheiten finden sich in Tab. B-1 (Anhang).

Die potenziellen Ausbeuten von Wertstoffen (SEE sowie Zirkonium und Titan) der jeweiligen stratigraphischen Einheiten werden zur besseren Nachvollziehbarkeit und Vergleichbarkeit zu Gruppen zusammengefasst und mittels statistischer Kenngrößen (Anzahl Datenpopulation, Minimal- und Maximalwert, Quartilmaße und Median) beschrieben und jeweils auf eine Jahresförderleistung von 100.000 Jahrestonnen (Jato) Sandrohstoff bezogen. Dazu werden sowohl die Summenparameter aus den Leichten SEE (LREE: Sc, Y, La, Ce, Pr, Nd, Sm, als Oxide [kg]) und aus den Schweren SEE (HREE: Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, als Oxide [kg]) gebildet und dargestellt als auch die gewinnbaren Mengen Zirkonium und Titan jeweils als Menge gewinnbares Oxid [kg] aufgeführt. Die tabellarisch aufgeführten geochemischen Einzelergebnisse finden sich in Tab. A-3 und Tab. A-4 (Anhang).

Lithochemische Eigenschaften und Unterschiede zwischen den untersuchten stratigraphischen Einheiten werden mittels Mittelwerten abschließend am Ende dieses Kapitels herausgestellt, zusammengefaßt und bewertet.

4.1.2 Buntsandstein

Kornsummenkurven des Sandrohstoffes:

Abb. 12: Kornsummencharakteristik Buntsandstein.

Das Korngrößenmaximum liegt zwischen 0,25 und 2 mm. Der Kiesanteil übersteigt nur in Ausnahmefällen 20 %. Der Anteil der abschlämmbaren Anteile (< 0,063 mm) liegt in der Regel zwischen 5 und 15 %, in einigen Partien auch darüber.

Schwermineralgehalte der jeweiligen Fraktionen:

Abb. 13: Schwermineralgehalt (Gew.-%) im Bereich 2 bis 1.000 µm im Buntsandstein.

Die gemittelten Ausbeuten von Schwermineralen aus den Gesamtproben (Angabe in Gew.-%), gruppiert nach Stratigraphie, ergeben hier eine zweigipflige (bimodale) Verteilung. Schwerminerale finden sich demnach konzentriert in der Schluff-Fraktion < 63 μ m und gehäuft in der Sandfraktion zwischen 125 μ m und 250 μ m. Datengrundlage: 27 Sandproben, 27 Schluffproben.

SEE-Verteilungsmuster (Schluff-Fraktion bzw. Sand-Fraktion):

Abb. 14: SEE-Verteilungsmuster im Buntsandstein.

Der Kurvenverlauf der SEE in Schluff- und Sandfraktion entspricht sich weitgehend, wobei die normalisierten Verhältnisse der SEE aus den Sandfraktionen variabler als die der Schluff-Fraktionen sind. Eine negative Europium-Anomalie ist charakteristisch ausgebildet.

Mineralogie (Mittelwerte aus Schwermineralkonzentraten):

Schluff (n = 14)

Abb. 15: Verteilung Leicht- und Schwerminerale im Buntsandstein.

Abb. 17: Verteilung Leicht- und Schwerminerale im Buntsandstein.

Abb. 18: Schwermineralzusammensetzung im Buntsandstein. Gemessen am mittleren Abtrenngrad der Schwerminerale von 85,4 % (Schluff) bzw. 81,3 % (Sand) konnte hier eine höhere mittlere Ausbeute von 89,5 % bzw. 85,6 % erzielt werden. Auffallend sind die hohen Anteile an SEE-Mineralen in der Schluff- und den Sandfraktionen (46,6 % bzw. 46,7 %). Darin sind jeweils Zirkon und Apatit dominierend, Monazit ist nur zu 2,0 % (Schluff) bzw. 2,4 % (Sand) vertreten. Die Gehalte von Titan-Mineralen im Schluff bzw. in den Sandfraktionen sind mit 37,6 % bzw. 33,9 % unterschiedlich repräsentiert und gemessen an den Mittelwerten für Schluff und die Sandfraktionen überdurchschnittlich (Tab. B-1, Anhang).

Absolutgehalte von Schwermineralen (SM) in Gesamtproben:

Abb. 19: Boxplot Buntsandstein Schwermineralausbeute.

Die graphische Darstellung zeigt jeweils für die möglichen Schwermineralausbeuten aus Sand und Schluff (von unten nach oben) den Minimalwert, das untere Quartilmaß (25%), den Median (50%), das obere Quartilmaß (75%) sowie den Maximalwert, bezogen auf alle Proben des Buntsandsteins. Demnach befinden sich 50% der Schwermineralwerte (Sand) zwischen ca. 38 und ca. 74 t, beim Schluff zwischen ca. 4 und 38 t. Wie durch die Mediane angegeben, lassen sich aus Sandrohstoffen des Buntsandstein pro 100.000 t geförderten Sand im Mittel ca. 52 t Schwerminerale aus der Sandfraktion sowie ca. 19 t aus der Schluff-Fraktion gewinnen (s. a. statistische Maßzahlen in nachfolgender Tab. 3).

Tab. 3: Mittlere Schwermineralausbeuten auf Grundlage einer Jahresförderleistung von jeweils 100.000 t Sandrohstoff für Gewinnungsstellen im Buntsandstein.

Bereich	Anzahl Proben (n)	Ausbeute (t) minimal	Ausbeute (t) maximal	Mittelwert (t), arithmetisch	Median (t)	Unteres Quartil (t)	Oberes Quartil (t)
Sand	27	17,07	153,27	58,18	52,28	37,87	74,05
Schluff	27	1,78	107,01	24,94	18,95	4,21	37,62

Schwankungsbreiten sowie mittlere Elementoxid-Gehalte:

Abb. 20: Mittlere Ausbeute an Leichten (LREE) und Schweren (HREE) SEE-Oxiden im Buntsandstein.

Die Minimal- und Maximalwerte sowie die Quartilmaße zeigen eine relativ hohe Streuung der untersuchten Oxide auf. Wie durch die Mediane angegeben, lassen sich aus Sandrohstoffen des Buntsandstein pro 100.000 t geförderten Sandrohstoff durchschnittlich ca. 2.770 kg Leichte und ca. 310 kg Schwere SEE-Oxide nach Aufbereitung und Raffination gewinnen (s. a. statistische Maßzahlen in Tab. C-1, Anhang). Das Verhältnis der Leichten zu den Schweren SEE beträgt 8,99.

Darüber hinaus existiert ein weiteres Potenzial an Zirkonium- sowie Titan-Oxid von ca. 7 t bzw. rund 18 t, das aus den Schwermineralgemischen (hier überwiegend Zirkon und Anatas/Rutil) als gewinnbare Wertstoffe zusätzlich mit abgetrennt werden kann (Tab. C-1, Anhang). Gemessen an den Mittelwerten aller stratigraphischer Einheiten sind die gewinnbaren Mengen von Zirkon- und Titanoxiden unterdurchschnittlich.

Gesamte, erzielbare Oxid-Ausbeute bezogen auf alle Gewinnungsstellen:

Für die folgende Bilanz werden die mittleren erzielbaren Oxid-Ausbeuten aller Gewinnungsstellen im Buntsandstein zusammengefasst und auf Basis einer jeweiligen Jahresförderleistung von 100.000 t pro Standort summiert. Angenommen wird jeweils eine komplette Abtrennung der Schwerminerale (Ausbringungsrate 100 %) im Korngrößenbereich 2 µm - 1.000 µm und ihre völlige Auftrennung (mittels Raffination) in gewinn- und nutzbare Einzeloxide.

Aus den 11 befahrenen und zusätzlich 2 modellhaft dargestellten Standorten im Buntsandstein ließen sich mit o.g. Annahmen theoretisch jährlich ca. 39,9 t LREE-Oxide und ca. 4,4 t HREE-Oxide sowie ca. 138,9 t Zirkon-Oxid und ca. 305,9 t Titan-Oxid gewinnen (Tab. D-1, Anhang). Obwohl von diesen 13 Gewinnungsstellen nur 9 aktiv sind, davon aber 5 im großen Stil (Förderraten 550.000 bis 2.200.000 Jahrestonnen) operieren, resultiert daraus ein jährlicher Durchsatz von ca. 3,9 Mio. t Sandrohstoff. Deswegen kann aktuell die theoretische Ausbeute um den Faktor 3 vergrößert angegeben werden, d. h. jährlich ca. 120 t LREE-Oxide und ca. 13 t HREE-Oxide sowie ca. 417 t Zirkon-Oxid und ca. 918 t Titan-Oxid (Tab. 10).

4.1.3 Sandsteinkeuper

Kornsummenkurven des Sandrohstoffes:

Abb. 22: Kornsummencharakteristik Sandsteinkeuper.

Es handelt sich durchweg um grob- bis mittelkörnige Sande, die schwach kiesig, schwach feinsandig und teilweise auch schluffig ausgebildet sind.

Schwermineralgehalte der jeweiligen Fraktionen:

Abb. 23: Schwermineralgehalt (Gew.-%) im Bereich 2 bis 1.000 µm im Sandsteinkeuper.

Die gemittelten Ausbeuten von Schwermineralen aus den Gesamtproben (Angabe in Gew.-%), gruppiert nach Stratigraphie, ergeben hier eine nur angedeutete zweigipflige Verteilung. Schwerminerale finden sich demnach überwiegend in der Schluff-Fraktion < 63 µm. Ein schwaches Häufungsmaximum in der Sandfraktion liegt zwischen 125 µm und 500 µm. Datengrundlage: 32 Sandproben, 32 Schluffproben.

SEE-Verteilungsmuster (Schluff-Fraktion bzw. Sand-Fraktion):

Abb. 24: SEE-Verteilungsmuster im Sandsteinkeuper.

Der Kurvenverlauf der SEE in Schluff- und Sandfraktion entspricht sich weitgehend, die normalisierten Verhältnisse der SEE aus Sandfraktionen sind variabler als die der Schluff-Fraktionen. Eine negative Europium-Anomalie ist charakteristisch ausgebildet.

Mineralogie (Mittelwerte aus Schwermineralkonzentraten):

Schluff (n = 12)

Abb. 27: Verteilung Leicht- und Schwerminerale im Abb. 28: Schwermineralzusammensetzung im Sandsteinkeuper.

Sandsteinkeuper.

Der Abtrenngrad entspricht hier der mittleren Ausbeute (aus allen Proben) von Schwermineralen (Tab. B-1). Die SEE-Minerale liegen mit 42,0 % (Schluff) bzw. 32,5 % (Sand) über den jeweiligen Mittelwerten (33,3 % bzw. 28,3 %). In beiden Fraktionen ist Zirkon dominierend, gefolgt von Apatit, Monazit (4,3 % in Schluff, 3,8 % in Sand) und Epidot (4,3 % in Schluff). Die Gehalte von Titan-Mineralen im Schluff bzw. in den Sandfraktionen sind mit 19,6 % bzw. 35,6 % unterschiedlich repräsentiert und gemessen an den Mittelwerten einerseits unterdurchschnittlich (Schluff) andererseits überdurchschnittlich. Auffällig sind mittlere Schwerspat- (Baryt-) Gehalte von 2,8 % (Schluff) bzw. 3,0 % (Sand) (Tab. B-1, Anhang).

Absolutgehalte von Schwermineralen (SM) in Gesamtproben:

Abb. 29: Boxplot Sandsteinkeuper Schwermineralausbeute.

Die graphische Darstellung zeigt jeweils für die möglichen Schwermineralausbeuten aus Sand und Schluff (von unten nach oben) den Minimalwert, das untere Quartilmaß (25%), den Median (50%), das obere Quartilmaß (75%) sowie den Maximalwert, bezogen auf alle Proben des Sandsteinkeuper. Demnach befinden sich 50% der Schwermineralwerte (Sand) zwischen ca. 22 und ca. 64 t, beim Schluff zwischen ca. 6 und 27 t. Wie durch die Mediane angegeben, lassen sich aus Sandrohstoffen des Keuper pro 100.000 t geförderten Sand im Mittel ca. 45 t Schwerminerale aus der Sandfraktion, ca. 12 t aus der Schluff-Fraktion gewinnen (s. a. statistische Maßzahlen in nachfolgender Tab. 4).

Tab. 4: Mittlere Schwermineralausbeuten auf Grundlage einer Jahresförderleistung von jeweils 100.000 t Sandrohstoff für Gewinnungsstellen im Sandsteinkeuper.

Bereich	Anzahl Proben (n)	Ausbeute (t) minimal	Ausbeute (t) maximal	Mittelwert (t), arithmetisch	Median (t)	Unteres Quartil (t)	Oberes Quartil (t)
Sand	32	9,17	209,14	57,99	44,54	22,24	64,06
Schluff	30	0,58	138,75	24,36	12,42	5,92	26,64

Schwankungsbreiten sowie mittlere Elementoxid-Gehalte:

Abb. 30: Mittlere Ausbeute an Leichten (LREE) und Schweren (HREE) SEE-Oxiden im Sandsteinkeuper.

Die Minimal- und Maximalwerte sowie die Quartilmaße zeigen eine relativ hohe Streuung der untersuchten Oxide auf. Wie durch die Mediane angegeben, lassen sich aus Sandrohstoffen des Sandsteinkeuper pro 100.000 t geförderten Sandrohstoff durchschnittlich ca. 2.737 kg Leichte und ca. 295 kg Schwere SEE-Oxide nach Aufbereitung und Raffination gewinnen (s. a. statistische Maßzahlen in Tab. C-2, Anhang). Das Verhältnis der Leichten zu den Schweren SEE beträgt 9,27.

Darüber hinaus existiert ein weiteres Potenzial an Zirkonium- sowie Titan-Oxid von ca. 4 t bzw. ca. 16 t, das aus den Schwermineralgemischen (hier überwiegend Zirkon und Anatas/Rutil) als gewinnbare Wertstoffe zusätzlich mit abgetrennt werden kann (Tab. C-2, Anhang). Gemessen an den Mittelwerten aller stratigraphischer Einheiten sind die gewinnbaren Mengen von Zirkon- und Titanoxiden unterdurchschnittlich.

Gesamte, erzielbare Oxid-Ausbeute bezogen auf alle Gewinnungsstellen:

Für die folgende Bilanz werden die mittleren erzielbaren Oxid-Ausbeuten aller Gewinnungsstellen im Sandsteinkeuper zusammengefasst und auf Basis einer jeweiligen Jahresförderleistung von 100.000 t pro Standort summiert. Angenommen wird jeweils eine komplette Abtrennung der Schwerminerale (Ausbringungsrate 100 %) im Korngrößenbereich 2 µm - 1.000 µm und ihre völlige Auftrennung (mittels Raffination) in gewinn- und nutzbare Einzeloxide.

Aus den 19 befahrenen Standorten im Sandsteinkeuper ließen sich mit o.g. Annahmen theoretisch jährlich ca. 78 t LREE-Oxide und ca. 8 t HREE-Oxide sowie ca. 174 t Zirkon-Oxid und ca. 454 t Titan-Oxid gewinnen. Da jedoch von diesen 19 Gewinnungsstellen nur 16 aktiv bzw. zeitweise aktiv sind und dabei nur 6 über Sandwäschen verfügen (Durchsätze zwischen 100.000 Jato bis max. 250.000 Jato) ist davon auszugehen, dass die momentane Ausbeute der aktiven Gewinnungsstellen (mit Sandwäsche) der theoretischen aller Gewinnungsstellen des Sandsteinkeuper entsprechen dürfte (Tab. D-1, Anhang; Tab. 10).

4.1.4 Sandsteinkeuper, quartärzeitlich umgelagert

Kornsummenkurven des Sandrohstoffes:

Abb. 32: Kornsummencharakteristik quartärzeitlich umgelagerter Sandsteinkeuper.

Die untersuchten Sandrohstoffe ergeben ein sehr schmales Körnungsband. Es handelt sich um gut sortierte Mittelsande mit nur geringen feinsandigen, grobsandigen, kiesigen und schluffigen Beimengungen.

Schwermineralgehalte der jeweiligen Fraktionen:

Abb. 33: Schwermineralgehalt (Gew.-%) im Bereich 2 bis 1.000 µm im quartärzeitlich umgelagerten Sandsteinkeuper. Die gemittelten Ausbeuten von Schwermineralen aus den Gesamtproben (Angabe in Gew.-%), gruppiert nach Stratigraphie, ergeben hier eine bimodale Verteilung. Schwerminerale finden sich demnach konzentriert in der Schluff-Fraktion < 63 µm und gehäuft in den Sandfraktionen zwischen 125 µm und 1.000 µm. Datengrundlage: 12 Sandproben, 12 Schluffproben.

SEE-Verteilungsmuster (Schluff-Fraktion bzw. Sand-Fraktion):

Abb. 34: SEE-Verteilungsmuster im quartärzeitlich umgelagerten Sandsteinkeuper.

Der Kurvenverlauf der SEE in Schluff- und Sandfraktion entspricht sich weitgehend, die normalisierten Verhältnisse der SEE aus Sandfraktionen sind variabler als die der Schluff-Fraktionen. Eine negative Europium-Anomalie ist charakteristisch ausgebildet.

Mineralogie (Mittelwerte aus Schwermineralkonzentraten):

Schluff (n = 12)

Abb. 35: Leicht- und Schwermineralverteilung im quartärzeitlich umgelagerten Sandsteinkeuper.

zeitlich umgelagerten Sandsteinkeuper.

Abb. 37: Leicht- und Schwermineralverteilung im quartärzeitlich umgelagerten Sandsteinkeuper.

Abb. 38: Schwermineralzusammensetzung im quartärzeitlich umgelagerten Sandsteinkeuper.

Gemessen am mittleren Abtrenngrad der Schwerminerale von 85,4 % (Schluff) bzw. 81,3 % (Sand) wurde hier einerseits eine geringere (Schluff) andererseits eine höhere mittlere Ausbeute (Sand) von 82,0 % bzw. 85,3 % erzielt. Auffallend sind die schwankenden Anteile an SEE-Mineralen in Schluff- und Sandfraktionen (33,8 % bzw. 24,0 %). Darin sind jeweils Zirkon und Apatit dominie-rend, Monazit ist zu 4,8 % (Schluff) bzw. 1,1 % (Sand) vertreten. Die Gehalte an Titan-Mineralen sind mit 20,9 % bzw. 21,5 % relativ ähnlich. Auffällig hoch sind die mittleren Schwerspat- (Baryt-) Gehalte von 11,4 % (Schluff) bzw. 20,1 % (Sand) (Tab. B-1, Anhang).

Absolutgehalte von Schwermineralen (SM) in Gesamtproben:

Abb. 39: Boxplot Sandsteinkeuper, quartärzeitlich umgelagert; Schwermineralausbeute.

Die graphische Darstellung zeigt jeweils für die möglichen Schwermineralausbeuten aus Sand und Schluff (von unten nach oben) den Minimalwert, das untere Quartilmaß (25 %), den Median (50 %), das obere Quartilmaß (75 %) sowie den Maximalwert, bezogen auf alle Proben des quartärzeitlich umgelagerten Sandsteinkeuper. Demnach befinden sich 50 % der Schwermineralwerte (Sand) zwischen ca. 75 und ca. 141 t, beim Schluff zwischen ca. 27 und 37 t. Wie durch die Mediane angegeben, lassen sich aus Sandrohstoffen des quartärzeitlich umgelagerten Keuper pro 100.000 t geförderten Sand im Mittel ca. 100 t Schwerminerale aus der Sandfraktion und ca. 32 t aus der Schluff-Fraktion gewinnen (s. a. statistische Maßzahlen in nachfolgender Tab. 5).

Tab. 5: Mittlere Schwermineralausbeuten auf Grundlage einer Jahresförderleistung von jeweils 100.000 t Sandrohstoff für Gewinnungsstellen im quartärzeitlich umgelagerten Sandsteinkeuper.

Bereich	Anzahl Proben (n)	Ausbeute (t) minimal	Ausbeute (t) maximal	Mittelwert (t), arithmetisch	Median (t)	Unteres Quartil (t)	Oberes Quartil (t)
Sand	12	43,73	281,81	122,05	100,21	74,44	140,82
Schluff	12	14,73	52,86	32,40	32,14	27,42	36,77

Schwankungsbreiten sowie mittlere Elementoxid-Gehalte:

Abb. 40: Mittlere Ausbeute an Leichten (LREE) und Schweren (HREE) SEE-Oxiden im quartärzeitlich umgelagerten Sandsteinkeuper.

Die Minimal- und Maximalwerte sowie die Quartilmaße zeigen eine relativ hohe Streuung der untersuchten Oxide auf. Wie durch die Mediane angegeben, lassen sich aus Sandrohstoffen des quartärzeitlich umgelagerten Sandsteinkeuper pro 100.000 t geförderten Sandrohstoff durchschnittlich ca. 4.281 kg Leichte und ca. 437 kg Schwere SEE-Oxide nach Aufbereitung und Raffination gewinnen (s. a. statistische Maßzahlen in Tab. C-3, Anhang). Das Verhältnis der Leichten zu den Schweren SEE beträgt 9,80.

Darüber hinaus existiert auch hier ein weiteres Potenzial an Zirkonium- sowie Titan-Oxid von ca. 7 t bzw. ca. 18 t, das aus den Schwermineralgemischen (hier überwiegend Zirkon und Anatas/Rutil) als gewinnbare Wertstoffe zusätzlich mit abgetrennt werden kann (Tab. C-3, Anhang). Gemessen an den Mittelwerten aller stratigraphischer Einheiten sind die gewinnbaren Mengen der Leichten und Schweren SEE überdurchschnittlich, die von Zirkon- und Titanoxiden unterdurchschnittlich.

Gesamte, erzielbare Oxid-Ausbeute bezogen auf alle Gewinnungsstellen:

Für die folgende Bilanz werden die mittleren erzielbaren Oxid-Ausbeuten aller Gewinnungsstellen im quartärzeitlich umgelagerten Sandsteinkeuper zusammengefasst und auf Basis einer jeweiligen Jahresförderleistung von 100.000 t pro Standort summiert. Angenommen wird jeweils eine komplette Abtrennung der Schwerminerale (Ausbringungsrate 100 %) im Korngrößenbereich 2 µm - 1.000 µm und ihre völlige Auftrennung (mittels Raffination) in gewinn- und nutzbare Einzeloxide.

Aus den 7 befahrenen Standorten ließen sich mit o.g. Annahmen theoretisch jährlich ca. 47 t LREE-Oxide und ca. 5 t HREE-Oxide sowie ca. 85 t Zirkon-Oxid und ca. 203 t Titan-Oxid gewinnen. Die jetzigen Produktionsmengen (überwiegend < 100.000 Jato) sowie die vorhandene, meist einfachere Anlagentechnik der Sandwäschen läßt momentan jedoch nur eine Ausbeute unterhalb dieser theoretischen Größenordnung zu (Tab. D-1, Anhang; Tab. 10).
4.1.5 Rhätolias

Kornsummenkurven des Sandrohstoffes:

Abb. 42: Kornsummencharakteristik Rhätolias.

Es handelt sich überwiegend um grobsandigen Mittelsand, der schwach feinsandig, schwach schluffig, schwach kiesig ausgebildet ist.

Schwermineralgehalte der jeweiligen Fraktionen:

Abb. 43: Schwermineralgehalt (Gew.-%) im Bereich 2 bis 1.000 µm im Rhätolias.

Die gemittelten Ausbeuten von Schwermineralen aus den Gesamtproben (Angabe in Gew.-%), gruppiert nach Stratigraphie, ergeben hier eine zweigipflige Verteilung. Schwerminerale finden sich demnach konzentriert in der Schluff-Fraktion < 63 µm und gehäuft in der Sandfraktion zwischen 125 µm und 250 µm. Datengrundlage: 12 Sandproben, 12 Schluffproben.

SEE-Verteilungsmuster (Schluff-Fraktion bzw. Sand-Fraktion):

Abb. 44: SEE-Verteilungsmuster im Rhätolias.

Der Kurvenverlauf der SEE in Schluff- und Sandfraktion entspricht sich weitgehend. Die normalisierten Verhältnisse der SEE aus Schluff- und Sandfraktionen sind fast gleich. Eine negative Europium-Anomalie ist charakteristisch ausgebildet.

Mineralogie (Mittelwerte aus Schwermineralkonzentraten):

Schluff (n = 11)

Abb. 45: Leicht- und Schwermineralverteilung im Rhätolias.

Abb. 47: Leicht- und Schwermineralverteilung im Rhätolias.

Abb. 48: Schwermineralzusammensetzung im Rhätolias. Gemessen am mittleren Abtrenngrad der Schwerminerale von 85,4 % (Schluff) bzw. 81,3 % (Sand) wurden sowohl für den Schluff als auch für die Sandfraktionen geringere Ausbeuten (83,8 % bzw. 76,4 %) erzielt. Auffallend sind die niedrigen Anteile an SEE-Mineralen in den Schluff- und Sandfraktionen (28,5 % bzw. 18,7 %). Darin sind jeweils Zirkon (dominierend) und Monazit (6,5 % bzw. 1,5 %) vertreten, Apatit fehlt in beiden ganz. Die Gehalte an Titan-Mineralen sind mit 31,3 % bzw. 18,7 % in Schluff- und Sandfraktionen unterschiedlich repräsentiert und gemessen an den Mittelwerten einerseits überdurchschnittlich (Schluff) andererseits unterdurchschnittlich (Tab. B-1, Anhang).

Absolutgehalte von Schwermineralen (SM) in Gesamtproben:

Abb. 49: Boxplot Rhätolias Schwermineralausbeute.

Die graphische Darstellung zeigt jeweils für die möglichen Schwermineralausbeuten aus Sand und Schluff (von unten nach oben) den Minimalwert, das untere Quartilmaß (25 %), den Median (50 %), das obere Quartilmaß (75 %) sowie den Maximalwert, bezogen auf alle Proben des Rhätolias. Demnach befinden sich 50 % der Schwermineralwerte (Sand) zwischen ca. 83 und ca. 139 t, beim Schluff zwischen ca. 32 und 67 t. Wie durch die Mediane angegeben, lassen sich aus Sandrohstoffen des Rhätolias pro 100.000 t geförderten Sand im Mittel ca. 118 t Schwerminerale aus der Sandfraktion sowie ca. 38 t aus der Schluff-Fraktion gewinnen (s. a. statistische Maßzahlen in nachfolgender Tab. 6).

Tab. 6: Mittlere Schwermineralausbeuten auf Grundlage einer Jahresförderleistung von jeweils 100.000 t Sandrohstoff für Gewinnungsstellen im Rhätolias.

Bereich	Anzahl Proben (n)	Ausbeute (t) minimal	Ausbeute (t) maximal	Mittelwert (t), arithmetisch	Median (t)	Unteres Quartil (t)	Oberes Quartil (t)
Sand	12	26,73	281,57	118,07	117,76	82,87	138,91
Schluff	12	13,21	122,55	49,87	38,41	32,08	67,10

Schwankungsbreiten sowie mittlere Elementoxid-Gehalte:

Abb. 50: Mittlere Ausbeute an Leichten (LREE) und Schweren (HREE) SEE-Oxiden im Rhätolias.

Die Minimal- und Maximalwerte sowie die Quartilmaße zeigen eine relativ hohe Streuung der untersuchten Oxide auf. Wie durch die Mediane angegeben, lassen sich aus Sandrohstoffen des Rhätolias pro 100.000 t geförderten Sandrohstoff durchschnittlich ca. 4.952 kg Leichte und ca. 598 kg Schwere SEE-Oxide nach Aufbereitung und Raffination gewinnen (s. a. statistische Maßzahlen in Tab. C-4, Anhang). Das Verhältnis der Leichten zu den Schweren SEE beträgt 8,27.

Abb. 51: Mittlere Ausbeute an Zirkonium- und Titan-Oxid im Rhätolias.

Darüber hinaus existiert ein weiteres Potenzial an Zirkonium- sowie Titan-Oxid von rund 9 t bzw. ca. 44 t, das aus den Schwermineralgemischen (hier überwiegend Zirkon und Anatas/Rutil) als gewinnbare Wertstoffe zusätzlich mit abgetrennt werden kann (Tab. C-4, Anhang). Gemessen an den Mittelwerten aller stratigraphischer Einheiten sind die gewinnbaren Mengen der Leichten und Schweren SEE überdurchschnittlich, die von Zirkon- und Titanoxiden unterdurchschnittlich.

Gesamte, erzielbare Oxid-Ausbeute bezogen auf alle Gewinnungsstellen:

Für die folgende Bilanz werden die mittleren erzielbaren Oxid-Ausbeuten aller Gewinnungsstellen im Rhätolias zusammengefasst und auf Basis einer jeweiligen Jahresförderleistung von 100.000 t pro Standort summiert. Angenommen wird jeweils eine komplette Abtrennung der Schwerminerale (Ausbringungsrate 100 %) im Korngrößenbereich 2 µm - 1.000 µm und ihre völlige Auftrennung (mittels Raffination) in gewinn- und nutzbare Einzeloxide.

Aus den 8 befahrenen Standorten ließen sich mit o.g. Annahmen theoretisch jährlich ca. 57 t LREE-Oxide und ca. 7 t HREE-Oxide sowie ca. 113 t Zirkon-Oxid und ca. 335 t Titan-Oxid gewinnen. Die jetzigen Produktionsmengen (überwiegend < 100.000 Jato) sowie die, wenn vorhanden, meist einfachere Anlagentechnik der Sandwäschen lassen momentan jedoch nur eine Ausbeute unterhalb dieser theoretischen Größenordnung zu (Tab. D-1, Anhang; Tab. 10).

4.1.6 Dogger

Kornsummenkurven des Sandrohstoffes:

Die untersuchten Sande treten als gut sortierte Mittelsande (über 70 % zwischen 0,2 und 0,63 mm) mit schwach feinsandiger, schwach kiesiger und schluffiger Komponente auf.

Schwermineralgehalte der jeweiligen Fraktionen:

Abb. 53: Schwermineralgehalt (Gew.-%) im Bereich 2 bis 1.000 μm im Dogger β (hier geänderte Y-Achse).

Abb. 52: Kornsummencharakteristik Dogger β .

Die gemittelten Ausbeuten von Schwermineralen aus den Gesamtproben (Angabe in Gew.-%), gruppiert nach Stratigraphie, ergeben hier eine deutlich bimodale Verteilung. Schwerminerale finden sich demnach konzentriert in der Schluff-Fraktion < 63 μ m und gehäuft in der Sandfraktion zwischen 250 μ m und 500 μ m. Datengrundlage: 9 Sandproben, 9 Schluffproben.

SEE-Verteilungsmuster (Schluff-Fraktion bzw. Sand-Fraktion):

Abb. 54: SEE-Verteilungsmuster im Dogger β.

Der Kurvenverlauf der SEE in der Schluff- und Sandfraktion entspricht sich weitgehend, die normalisierten Verhältnisse der SEE aus Schluff- und Sandfraktionen sind fast gleich. Eine negative Europium-Anomalie ist nur undeutlich ausgebildet. Tendenziell ist das Verhältnis der Schweren SEE (Gd bis Lu) zu den Leichten SEE (La bis Sm) im Schluff (mit einer Ausnahme) günstiger. Im Sand können zwei Teilpopulationen erkannt werden: eine mit "normaler" Anreicherung der Leichten SEE gegenüber den Schweren SEE und eine weitere mit einem "angehobenen" Verhältnis der Schweren SEE zu den Leichten SEE. Nach diesem Erstbefund spricht die SEE-Verteilung in den Schwermineralen des Dogger β für ein anderes Liefergebiet als die der übrigen Stratigraphien. Beachtet man zusätzlich auch die Mineralogie (siehe unten folgend) kann jedoch auch eine nachträglich stattgefundene chemische Umsetzung für eine Veränderung primärer Verteilungsmuster verantwortlich sein. SEE Träger sind hier neben Zirkon, vermutlich auch Goethit, der die SEE nach einer chemischen Lösung und selektiven An- und Abreicherung "adsorbiert" hat.

Mineralogie (Mittelwerte aus Schwermineralkonzentraten):

Schluff (n = 9)

Abb. 55: Leicht- und Schwermineralverteilung im Dogger β.

Sand (n = 9)

Abb. 57: Leicht- und Schwermineralverteilung im Dogger β .

Der Abtrenngrad an Schwermineralen in Schluff und Sand erreicht hier nicht den Wert der mittleren Ausbeute. Die Gruppe der SEE-Minerale liegt mit 17,3 % (Schluff) bzw. 13,8 % (Sand) deutlich unter den jeweiligen Mittelwerten (33,3 % bzw. 28,3 %). In beiden Fraktionen ist ausschließlich Zirkon als SEE-Mineral vorhanden. Die mittleren Gehalte an Titan-Mineralen sind mit 32,7 % bzw. 26,9 % unterschiedlich repräsentiert und (gemessen an den mittleren Gehalten) einerseits für den Schluff höher (32,7 %) andererseits im Sand niedriger (26,9 %). Auffällig sind die hohen mittleren Eisenmineral-Gehalte (überwiegend Goethit) von 33,3 % (Schluff) bzw. 35,1 % (Sand) (Tab. B-1, Anhang).

Absolutgehalte von Schwermineralen (SM) in Gesamtproben:

Abb. 59: Boxplot Dogger β Schwermineralausbeute (hier geänderte Y-Achse).

Die graphische Darstellung zeigt jeweils für die möglichen Schwermineralausbeuten aus Sand und Schluff (von unten nach oben) den Minimalwert, das untere Quartilmaß (25 %), den Median (50 %), das obere Quartilmaß (75 %) sowie den Maximalwert, bezogen auf alle Proben des Dogger β . Demnach befinden sich 50 % der Schwermineralwerte (Sand) zwischen ca. 250 und ca. 457 t, beim Schluff zwischen ca. 108 und 305 t. Wie durch die Mediane angegeben, lassen sich aus Sandroh-

stoffen des Dogger β pro 100.000 t geförderten Sand im Mittel ca. 330 t Schwerminerale aus der Sandfraktion und ca. 239 t aus der Schluff-Fraktion gewinnen (s. a. statistische Maßzahlen in nachfolgender Tab. 7)

Tab. 7: Mittlere Schwermineralausbeuten auf Grundlage einer Jahresförderleistung von jeweils 100.000 t Sandrohstoff für Gewinnungsstellen im Dogger β .

Bereich	Anzahl Proben (n)	Ausbeute (t) minimal	Ausbeute (t) maximal	Mittelwert (t), arithmetisch	Median (t)	Unteres Quartil (t)	Oberes Quartil (t)
Sand	9	139,45	4019,29	758,48	329,85	250,75	456,95
Schluff	9	30,57	2773,22	523,34	239,39	107,90	305,09

Schwankungsbreiten sowie mittlere Elementoxid-Gehalte:

Abb. 60: Mittlere Ausbeute an Leichten (LREE) und Schweren (HREE) SEE-Oxiden im Dogger β.

Die Minimal- und Maximalwerte sowie die Quartilmaße zeigen eine relativ hohe Streuung der untersuchten Oxide auf. Wie durch die Mediane angegeben, lassen sich aus Sandrohstoffen des Dogger β pro 100.000 t geförderten Sandrohstoff durchschnittlich ca. 1.815 kg Leichte und ca. 428 kg Schwere SEE-Oxide nach Aufbereitung und Raffination gewinnen (s. a. statistische Maßzahlen in Tab. C-5, Anhang). Das Verhältnis der Leichten zu den Schweren SEE beträgt 4,24. Das Verhältnis der Schweren SEE zu den Leichten SEE ist, wie schon im SEE-Pattern angezeigt, günstiger.

Darüber hinaus existiert ein großes Potenzial an Zirkonium- sowie Titan-Oxid von ca. 50 t bzw. ca. 168 t, das aus den Schwermineralgemischen (hier überwiegend Zirkon und Anatas/Rutil) als gewinnbare Wertstoffe zusätzlich mit abgetrennt werden kann (Tab. C-5, Anhang). Gemessen an den Mittelwerten aller stratigraphischer Einheiten sind die gewinnbaren Mengen der Leichten SEE unterdurchschnittlich, die Menge der Schweren SEE entspricht dem Mittelwert, die Mengen von Zirkon- und Titanoxiden sind deutlich überdurchschnittlich.

Gesamte, erzielbare Oxid-Ausbeute bezogen auf alle Gewinnungsstellen:

Für die folgende Bilanz werden die mittleren erzielbaren Oxid-Ausbeuten aller Gewinnungsstellen im Dogger β zusammengefasst und auf Basis einer jeweiligen Jahresförderleistung von 100.000 t pro Standort summiert. Angenommen wird jeweils eine komplette Abtrennung der Schwerminerale (Ausbringungsrate 100 %) im Korngrößenbereich 2 µm - 1.000 µm und ihre völlige Auftrennung (mittels Raffination) in gewinn- und nutzbare Einzeloxide. In einem Fall (Barbaragrube, Großschönbrunn) werden neben dem Schwerpunktabbau auf Dogger β -Sande auch Kreide-Sande im kleinen Umfang mitgewonnen und gemeinsam aufbereitet. Deswegen wurde hier, abweichend von der üblichen stratigraphisch orientierten Vorgehensweise, die Kreide-Probe aus dieser Gewinnungsstelle (Bar-88) bei der Bilanzierung der Lagerstätte mit berücksichtigt.

Aus den 3 befahrenen Standorten ließen sich mit o.g. Annahmen theoretisch jährlich ca. 7 t LREE-Oxide und ca. 1 t HREE-Oxide sowie ca. 136 t Zirkon-Oxid und ca. 514 t Titan-Oxid gewinnen (Tab. D-1, Anhang). Da diese 3 Gewinnungsstellen im großen Stil operieren (Förder- und Durchsatzraten insgesamt bis 900.000 Jahrestonnen), kann aktuell die theoretische Ausbeute um den Faktor 3 vergrößert angegeben werden, d.h. jährlich ca. 20 t LREE-Oxide und rund 4 t HREE-Oxide sowie ca. 407 t Zirkon-Oxid und ca. 1.543 t Titan-Oxid (Tab. 10).

4.1.7 Kreide

Kornsummenkurven des Sandrohstoffes:

Abb. 62: Kornsummencharakteristik Kreide.

Bei den untersuchten Rohstoffen handelt es sich um Mittel- bis Grobsande.

Schwermineralgehalte der jeweiligen Fraktionen:

Abb. 63: Schwermineralgehalt (Gew.-%) im Bereich 2 bis 1.000 µm in der Kreide.

Die gemittelten Ausbeuten von Schwermineralen aus den Gesamtproben (Angabe in Gew.-%), gruppiert nach Stratigraphie, ergeben hier eine schwach zweigipflige Verteilung. Schwerminerale finden sich demnach konzentriert in der Schluff-Fraktion < 63 μ m und gehäuft in der Sandfraktion zwischen 250 μ m und 500 μ m. Datengrundlage: 14 Sandproben, 14 Schluffproben.

SEE-Verteilungsmuster (Schluff-Fraktion bzw. Sand-Fraktion):

Abb. 64: SEE-Verteilungsmuster in der Kreide.

Der Kurvenverlauf der SEE in Schluff- und Sandfraktion entspricht sich weitgehend. Die (normalisierten) Verhältnisspannbreiten der SEE aus Schluff- und Sandfraktionen sind fast gleich. Es tritt ebenfalls eine charakteristische, negative Europium-Anomalie auf. Tendenziell sind die Schweren SEE Tm bis Lu leicht angereichert.

Mineralogie (Mittelwerte aus Schwermineralkonzentraten):

Schluff (n = 13)

Abb. 65: Leicht- und Schwermineralverteilung in der Kreide.

Abb. 66: Schwermineralzusammensetzung in der Kreide.

Sand (n = 14)

Abb. 67: Leicht- und Schwermineralverteilung in der Kreide.

Abb. 68: Schwermineralzusammensetzung in der Kreide.

Gemessen am mittleren Abtrenngrad der Schwerminerale von 85,4 % (Schluff) bzw. 81,3 % (Sand) wurde hier für beide Fraktionen eine höhere Ausbeute von 86,0 % bzw. 82,6 % erzielt. Auffallend sind die unterschiedlichen Anteile an SEE-Mineralen in Schluff- und den Sandfraktionen (31,3 % bzw. 33,8 %), die einerseits leicht unterdurchschnittlich (Schluff) andererseits leicht überdurch-schnittlich (Sand) ausfallen. Darin sind jeweils nur Zirkon und Monazit vertreten. Die Gehalte an Ti-tan-Mineralen sind mit 34,7% bzw. 36,9 % überdurchschnittlich repräsentiert (Tab. B-1, Anhang).

Absolutgehalte von Schwermineralen (SM) in Gesamtproben:

Die graphische Darstellung zeigt jeweils für die möglichen Schwermineralausbeuten aus Sand und Schluff (von unten nach oben) den Minimalwert, das untere Quartilmaß (25 %), den Median (50 %), das obere Quartilmaß (75 %) sowie den Maximalwert, bezogen auf alle Proben der Kreide. Demnach befinden sich 50 % der Schwermineralwerte (Sand) zwischen ca. 105 und ca. 254 t, beim Schluff zwischen ca. 12 und 57 t. Wie durch die Mediane angegeben, lassen sich aus Sandrohstof-

fen der Kreide pro 100.000 t geförderten Sand im Mittel ca.160 t Schwerminerale aus der Sandfraktion sowie ca. 29 t aus der Schluff-Fraktion gewinnen (s. a. statistische Maßzahlen in nachfolgender Tab. 8).

Tab. 8: Mittlere Schwermineralausbeuten auf Grundlage einer Jahresförderleistung von jeweils 100.000 tSandrohstoff für Gewinnungsstellen in der Kreide.

Bereich	Anzahl Proben (n)	Ausbeute (t) minimal	Ausbeute (t) maximal	Mittelwert (t), arithmetisch	Median (t)	Unteres Quartil (t)	Oberes Quartil (t)
Sand	14	42,45	322,09	174,18	160,38	105,80	254,45
Schluff	14	3,31	165,33	47,58	28,71	12,36	57,58

Schwankungsbreiten sowie mittlere Elementoxid-Gehalte

Abb. 70: Mittlere Ausbeute an Leichten (LREE) und Schweren (HREE) SEE-Oxiden in der Kreide.

Die Minimal- und Maximalwerte sowie die Quartilmaße zeigen eine relativ hohe Streuung der untersuchten Oxide auf. Wie durch die Mediane angegeben, lassen sich aus Sandrohstoffen der Kreide pro 100.000 t geförderten Sandrohstoff durchschnittlich ca. 4.009 kg Leichte und ca. 499 kg Schwere SEE-Oxide nach Aufbereitung und Raffination gewinnen (s. a. statistische Maßzahlen in Tab. C-6, Anhang). Das Verhältnis der Leichten zu den Schweren SEE beträgt 8,03.

Darüber hinaus existiert ein großes Potenzial an Zirkonium- sowie Titan-Oxid von ca. 20 t bzw. ca. 76 t, das aus den Schwermineralgemischen (hier überwiegend Zirkon und Anatas/Rutil) als gewinnbare Wertstoffe zusätzlich mit abgetrennt werden kann (Tab. C-6, Anhang). Gemessen an den Mittelwerten aller stratigraphischer Einheiten sind die gewinnbaren Mengen von Zirkon- und Titanoxiden überdurchschnittlich.

Gesamte, erzielbare Oxid-Ausbeute bezogen auf alle Gewinnungsstellen:

Für die folgende Bilanz werden die mittleren erzielbaren Oxid-Ausbeuten aller Gewinnungsstellen in der Kreide zusammengefasst und auf Basis einer jeweiligen Jahresförderleistung von 100.000 t pro Standort summiert. Angenommen wird jeweils eine komplette Abtrennung der Schwerminerale (Ausbringungsrate 100 %) im Korngrößenbereich 2 μ m - 1.000 μ m und ihre völlige Auftrennung (mittels Raffination) in gewinn- und nutzbare Einzeloxide.

Aus den 8 befahrenen Standorten ließen sich mit o.g. Annahmen theoretisch jährlich ca. 40,0 t LREE-Oxide und ca. 4,2 t HREE-Oxide sowie ca. 188,1 t Zirkon-Oxid und ca. 619,0 t Titan-Oxid gewinnen. Die jetzigen Produktionsmengen der 6 aktiven Betriebe (überwiegend < 100.000 Jato) sowie die nur an zwei Standorten betriebenen Sandwäschen lassen momentan jedoch nur eine Ausbeute unterhalb dieser theoretischen Größenordnung zu (Tab. D-1, Anhang; Tab. 10).

4.1.8 Vergleich der stratigraphischen Einheiten

Der Vergleich der mittleren, jährlich gewinnbaren Oxidmengen aus den untersuchten, einzelnen Stratigraphien (normiert auf eine jeweilige Jahresförderleistung von 100.000 t je stratigraphischer Einheit) lässt zwei Hauptaussagen zu:

Hinsichtlich der SEE-Oxide sind die Sande des Rhätolias, gefolgt vom quartärzeitlich umgelagerten Keuper und der Kreide am höffigsten. Die geringsten SEE-Oxid-Gehalte finden sich im Dogger β . Interessanter Weise ist jedoch hier das Verhältnis der Schweren SEE zu den Leichten SEE günstiger, was in Anbetracht der aktuellen Wertsituation die Chancen für deren Förderung und Nutzung vergrößern dürfte (Tab. 9).

Die Gehalte der ebenfalls nutzbaren Oxide von Zirkon und Titan liegen in den Sanden von Dogger β, gefolgt von denen der Kreide sowie des Rhätolias (nur bei Titan-Oxid) deutlich über denen der übrigen Stratigraphien. Eine Mitnutzung dieser Potenziale ist hier besonders angezeigt; diese Größenordnung wird in keiner der anderen Vorkommen erreicht (Tab. 9).

Stratigraphie	LREE (kg)	HREE (kg)	Zr-Oxid (kg)	Ti-Oxid (kg)	Verhältnis LREE/HREE
Buntsandstein	2.772	308	7.006	18.622	8,99
Sandsteinkeuper	2.737	295	3.789	16.261	9,27
Sandsteinkeuper, Quartär	4.281	437	6.604	17.832	9,80
Rhätolias	4.952	598	9.253	43.822	8,27
Dogger	1.815	428	49.705	167.986	4,24
Kreide	4.009	499	20.309	76.422	8,03

Tab. 9: Mittlere gewinnbare Oxidmengen (Mediane) nach Stratigraphie, bezogen auf 100.000 t geförderten Sandrohstoff.

4.2 Lagerstättenpotenzial aller Gewinnungsstellen

4.2.1 Aktuelle Gewinnung

Auf Grundlage der aktuellen, tatsächlichen Abbausituation kann das derzeit jährlich aus Schwermineralkonzentraten gewinnbare Oxid-Potenzial (SEE sowie Zr und Ti) als Gesamtbilanz angegeben werden. Wie bereits in den vorangegangen Teilkapiteln 4.1.2 bis 4.1.7 aufgezeigt, sind die potenziell abtrennbaren Mengen von der Anzahl der aktiven Betriebe, von den tatsächlichen Förder- und Aufbereitungsmengen sowie dem Vorhandensein, der Art und den Betriebsparametern von Aufbereitungsanlagen bestimmt. Da diese Positiv-Faktoren überwiegend für Betriebe im Buntsandstein, im Keuper sowie im Dogger β zutreffen, sind nur dort belastbare Angaben zum gewinnbaren SEE-Potenzial möglich. Die in den anderen Sandvorkommen operierenden Betriebe sind größtenteils durch kleinere Abbau- und Fördermengen (< 100.000 Jahrestonnen) sowie durch das Fehlen entsprechender Aufbereitungstechnik gekennzeichnet. Die aufgeführten Mengen für quartärzeitlich umgelagerten Keuper, Rhätolias sowie Kreide haben deswegen nur den Charakter einer prognostischen, maximal möglichen Größenordnung, die erst bei entsprechenden Abbau- und Durchsatzraten (≥ 100.000 Jahrestonnen je Betrieb) sowie mittels aufgebauter und funktionierender Anlagentechnik erreicht werden könnten.

(s.a. Angang D).				
Stratigraphie	LREE-Oxide (t)	HREE-Oxide (t)	Zr-Oxid (t)	Ti-Oxid (t)
Buntsandstein	120	13	417	918
Sandsteinkeuper	78	8	174	454
Sandsteinkeuper, Quartär	47	5	85	203
Rhätolias	57	6	113	335
Dogger	20	4	407	1.543
Kreide	40	4	188	619
Summe	362	40	1.384	4.072

Tab. 10: Übersicht der gesamt gewinnbaren Oxidmengen pro Jahr auf Grundlage der tatsächlichen jeweiligen Jahresförderleistung Sandrohstoff, gegliedert nach stratigraphischer Einheit; kursiv: hochgerechnete Angaben (s. a. Angang D).

Demnach setzen die operierenden Betriebe allein im Buntsandstein jährlich ca. 133 t SEE-Oxide sowie große Mengen an Zr-Oxid (ca. 417 t) und Ti-Oxid (ca. 918 t) um. Bezüglich SEE werden sie mengenmäßig gefolgt von denen des Keuper und des Dogger β (Tab. 10). Bemerkenswert sind darüber hinaus die hohen Mengen von Zr-Oxid (407 t) sowie Ti-Oxid (1.543 t) des Dogger β . Das heißt, die aktuell mit entsprechenden Abbaumengen und vorhandener Aufbereitung operierenden Betriebe in Buntsandstein, Keuper und Dogger β könnten bei entsprechender Abtrennung und Raffination jährlich ca. 218 t LREE-Oxide, ca. 25 t HREE-Oxide, ca. 998 t Zr-Oxid sowie ca. 2.915 t Ti-Oxid mitproduzieren. Würden alle anderen Betriebe aus Keuper (quartärzeitlich umgelagert), Rhätolias und Kreide auf eine jeweilige Minimal-Abbaumenge von 100.000 t Jahrestonnen und entsprechende Anlagentechnik "nachziehen", wären bis 400 t SEE-Oxide, ca. 1.380 t Zr-Oxid und über 4.000 t Ti-Oxid jährlich aus den bestehenden Abbaustellen gewinnbar.

4.2.2 Bestand Schlämmteiche und Absetzbecken

Die Ermittlung bzw. Angabe der gewinnbaren SEE und anderer Wertstoffe aus Schlämmteichen bzw. Absetzbecken gründet sich auf zwei Vorgehensweisen:

- Modellierung der Gehalte auf Grundlage der Probenahme, Analytik und Auswertung vorhandener Schwermineralverteilungen und - Gehalte in Schluff-Fraktionen der untersuchten Gewinnungsstellen.
- Lokalisierung von Schlämmteichen bzw. Absetzbecken und Auswertung ihrer Größe, Tiefe sowie ihres Inhalts mittels Luftbildern (Zeitspanne: 10 Jahre, 3-5 Zeitschnitte), topographischen Karten sowie Laser Scans (DGM, Auflösung 5 m). Beispiele zur Verdeutlichung des Auswerteprinzips finden sich im Anhang unter E (Gewinnungsstelle Mischelbach NE).

Da wegen des immensen Zeitbedarfs nicht alle Schlämmteiche beprobt bzw. begleitende Aufbereitung und Analytik daran durchgeführt werden konnten, wurde anhand von Stützpunkten eine Modellierung gerechnet.

Dazu wurden zunächst auf Grundlage integraler, gemittelter Angaben zur Korngrößenverteilung das wahrscheinliche Korngrößenspektrum aus der Kornfraktion < $2 \mu m$ (Ton) sowie zwischen >2 und < $125 \mu m$ (Schluff) jeweils auf 50 % festgelegt und für die weitere Berechnung herangezogen.

Für eine genauere Festlegung hätten sowohl anlagentechnische Gegebenheiten und lagerstättenspezifische Variationen (die die Auslegung und den Betrieb der Anlagentechnik bedingen) bekannt sein oder ermittelt werden müssen sowie eine engräumige Beprobung (mittels Sondierungen, Bohrungen) in den jeweiligen Schlämmteichen durchgeführt werden müssen. Dies war zeitlich, organisatorisch, finanziell und technisch (auch aus Sicherheitsgründen) jedoch nicht durchführbar. Zum anderen gestaltete sich die Aufbereitung der Schlämmteichproben als sehr zeitaufwändig, was für eine Untersuchung aller Schlämmteiche in der relativ kurzen Projektlaufzeit nicht leistbar gewesen wäre.

Auf Grundlage der Analytik der Rohproben (Schwermineral- sowie SEE-Gehalte in Sand- und Schluff-Proben) konnte jedoch nach o.g. Modell ein Mindestwert zu den jeweiligen Schlämmteichen ermittelt werden, wobei die Stoff-Inhalte je Standort aus den analysierten Oxid-Gehalten, den ermittelten Kubaturen sowie mittels angenommener Rohdichte von 2,2 g/cm³ errechnet wurden.

Die Modellierung erfolgte zudem nur an den Lokationen, wo nach vorliegender Information bislang keine Schwermineral-Abtrennung erfolgt und angenommen werden kann, dass der gesamte Schwermineral-Gehalt nach Sand-Aufbereitung und -Wäsche in den Schlämmteichen abgelagert ist.

Stratigraphie	Fläche Ab- setzbecken (m ²)	Kubatur (m³)	Gesamt- inhalt (t)	LREE- Oxide (kg)	HREE- Oxide (kg)	Zr-Oxid (kg)	Ti-Oxid (kg)
Buntsandstein	336.100	3.320.900	7.305.900	689.600	82.200	1.846.500	4.199.600
Sandsteinkeuper	71.700	305.100	671.300	39.000	3.800	62.200	149.100
Sandsteinkeuper, Quartär	123.000	389.900	857.800	167.300	15.500	348.800	527.600
Rhätolias	8.700	43.700	96.200	14.900	1.600	26.200	68.500
Kreide	34.000	170.000	373.900	16.800	2.000	63.600	252.800
Gesamt	573.500	4.229.600	9.305.100	927.600	105.100	2.347.300	5.197.600

Tab. 11: Inhalt Schlämmteiche, gegliedert nach Stratigraphie und unter Angabe der Teilsummenwerte.

Insgesamt konnten nach o.g. Kriterien 12 Betriebspunkte lokalisiert werden, wo Waschabgänge in Form von Schlämmen in Setzbecken bzw. Schlämmteichen aktuell eingeleitet werden oder wurden.

Im Buntsandstein befinden sich 4 Gewinnungsstellen, im Keuper 3, im quartärzeitlich umgelagerten Keuper 3, im Rhätolias eine sowie in der Kreide eine Gewinnungsstelle.

Die Gesamtfläche aller Schlämmteiche bzw. Absetzbecken beträgt auf Grundlage dieser Erhebung ca. 58 ha, ihr Inhalt liegt bei ca. 4,2 Mio m³. Mit der angenommenen Dichte von 2,2 g/cm² ergibt sich ein Gesamtgewicht von ca. 9,3 Mio t schwermineralführende Waschschlämme. Darin enthalten sind insgesamt ca. 928 t Leichte SEE-Oxide, ca. 105 t Schwere SEE-Oxide, aber auch rund 2.300 t Zirkonium-Oxid sowie rund 5.200 t Titan-Oxid (Tab. 11).

Sowohl nach Flächengröße und Inhalt als auch nach Menge der darin enthaltenen LREE-, HREE, Zrund Ti-Oxide sind demnach die Schlämmteiche im Buntsandstein am "höffigsten", gefolgt von denen aus quartärzeitlich umgelagertem Keuper sowie aus dem Keuper. Schlämmteiche aus Rhätolias bzw. Kreide spielen bei den SEE-Oxiden eine nur untergeordnete Rolle. Die relativ hohen Zirkon- und Titan-Oxid-Inhalte der Schlämmteiche in der Kreide heben sich davon deutlich ab (Tab. 11).

4.3 Schwermineralkonzentrate als SEE-Rohstoffe – mineralogische Bewertung

Die mineralogischen Befunde zeigen, dass die SEE der untersuchten Schwermineralfraktionen aller Stratigraphien außer Dogger β überwiegend an Monazit sowie Zirkon (und selten an Xenotim), untergeordnet vermutlich auch an Apatit und Epidot gebunden sind. Für eine potenzielle Gewinnung und "Nutzbarmachung" der SEE aus den geförderten Schwermineralkonzentraten müssen die Ziel-Minerale (überwiegend Monazit und Zirkon) erst mechanisch abgetrennt und angereichert, anschließend chemisch aufgeschlossen sowie mittels umfangreicher Raffinations- und Metallurgie-Prozesse in die verwertbaren SEE-Oxide aufgetrennt werden. Es handelt sich dabei um bekannte, weltweit praktizierte und beherrschbare Techniken (ELSNER 2006, 2010).

Demgegenüber lassen die besonderen mineralogischen und geochemischen Verhältnisse im Dogger β auf einen davon abweichenden Anreicherungsprozess der SEE schließen. Vermutlich haben chemische Lösungsvorgänge an primären Stoffbeständen (inklusive SEE führende Schwerminerale), Transport und anschließende Ausfällung von SEE im Sediment stattgefunden, wobei die SEE offensichtlich an neu gebildeten Eisenmineralen adsorbiert wurden. D. h. daß möglicherweise auch Eisenminerale in diesem Umfeld als potenzielle SEE-Träger eine große Rolle spielen und bei einer künftigen SEE-Gewinnung mit berücksichtigt werden müssen. Eine dahingehende detailliertere Untersuchung könnte dazu Klarheit bringen. Findet sich für diesen geologisch stattgefundenen Anreicherungs-Prozess eine Bestätigung und käme eine Nutzung der SEE in diesem Umfeld in Frage, müsste dahingehend auch eine angepasste Form der chemischen SEE-Abtrennung erwogen werden.

4.4 Zusätzliches Potenzial der abgetrennten Schwermineralkonzentrate

Die im Zuge der Untersuchung weiterhin festgestellten Schwermineral-Potenziale an Zirkon und Titan-Mineralen verdienen als "nebenbei entdeckte Zugabe" eine zusätzliche bzw. auch eine eingehendere Würdigung an dieser Stelle. Siehe dazu auch die Einzeldarstellungen in den Kapiteln 4.1.2 bis 4.1.7. sowie die zusammengefassten Ergebnisse in Kapitel 4.1.8 (Tab. 9).

Der Wertstoff Zirkonium, der hier für die geochemische Bilanzierung als Oxid ZrO_2 verwendet bzw. verrechnet wird, stammt ausschließlich aus dem Silikatmineral Zirkon (Zr $O_2 * SiO_2$).

Je nach Verwendungszweck kann Zirkon als Mineral (verwendet als Feuerfestmaterial in der keramischen Industrie), chemisch umgesetzt als Oxid (Zirkonia Zr O₂ für vielfältige chemisch-keramo-technische Einsatzmöglichkeiten) sowie zur Herstellung und seiner Verwendung als Metall Zirkonium (oder zu seiner Weiterverarbeitung zu Chemikalien) genutzt werden. Bedingt durch dieses breite verwendungstechnische Potenzial ist prognostisch von einer Steigerung der weltweiten Nachfrage an Zirkon auszugehen. Dem entsprechend werden auch die weltweiten Produktionsmengen steigen müssen; als wichtigste Herkunftsländer mit erweiterbaren Fördermengen gelten nach ELSNER (2013) überwiegend Australien, Afrika (Republik Südafrika, Senegal, Kenia, Madagaskar), Sri Lanka, Thailand, Malaysia und Indonesien (SE-Asien), die USA und Kanada sowie China. Europäische Projekte existieren demnach derzeit nicht. Nach dieser Prognose jedoch, unter Berücksichtigung verschiedener globaler Szenarien, ist davon auszugehen, dass die vorhandenen weltweiten Projekte zur Bedarfsdeckung (bis 2020) ausreichen werden. Vor diesem aktuellen (und künftigen) Hintergrund muß das wirtschaftliche Potenzial von "bayerischem" Zirkon entsprechend gewürdigt werden.

Die ebenfalls in den Schwermineralkonzentraten und teilweise in großen Mengen auftretenden Titanminerale (überwiegend Anatas und Rutil) könnten sich dagegen künftig ohne Einschränkung als potenzieller Wertstoff erweisen. Das für diese Potenzialberechnung bzw. für die großtechnische Nutzung verwendete Oxid TiO₂ liegt in dieser chemischen Form schon in den genannten Titan-Mineralen vor. Ein weiterer umfassender chemischer Abtrenn- bzw. Raffinationsschritt ist für die Gewinnung bzw. Nutzbarmachung nicht erforderlich; unerwünschte bzw. schädliche Stoffe können daher auch nicht entstehen bzw. freigesetzt werden.

Titandioxid wird wegen seiner hervorragenden technischen Eigenschaften sowie seiner Nicht-Toxizität weltweit überwiegend als Weißpigment verwendet, nur ein untergeordneter Teil der Titanminerale wird metallurgisch zu Titanmetall (für Anwendungen als Legierungsbestandteil in Metallen für den Flugzeugbau bis zur Medizintechnik) verarbeitet (ELSNER 2006).

Trotz Erschließung und Nutzbarmachung großer Vorkommen in Australien sowie an der Ostküste Afrikas überschreitet die Nachfrage nach natürlichem Rutil das weltweite Angebot deutlich (ELSNER 2006). Eine Mitnutzung des vorhandenen "bayerischen" Titandioxid-Potenzials aus Schwermineralkonzentraten ist daher angezeigt und erscheint aufgrund der beibrechenden Mengen auch wirtschaftlich möglich.

4.5 Anlagentechnik

Insgesamt befinden sich in den befahrenen Gewinnungsstellen 20 großtechnisch betriebene Aufbereitungsanlagen; 17 dienen alleinig der Sandwäsche bzw. zur Kornklassierung, 3 werden zur Abtrennung und Aufreinigung von Kaolin genutzt. Teilweise werden auch zentrale Anlagen zur Aufbereitung des an mehreren Gewinnungsstellen geförderten Materials betrieben. Als jährliche Stoffdurchsätze bei den größeren Sandwäschen werden Größenordnungen zwischen 100.000 t und 600.000 t angegeben. Im Kaolinrevier von Hirschau-Schnaittenbach liegen die jährlichen Förderund Durchsatzmengen bei 1.000.000 t bis 2.200.000 t Roherde.

Zum einen kommen hierbei neben Schwertwäschern und Naßklassierungseinrichtungen auch Hydrozyklone zum Einsatz, wobei Schwerminerale generell unberücksichtigt bleiben. Zum anderen nutzt die Kaolinaufbereitung neben diesen und anderen mechanischen Vorstufen auch die Dichtetrennung, Flotation und Magnetscheidung bzw. elektrostatische Trennverfahren im großtechnischen Maßstab. Hier werden bei hohen bis sehr hohen Reinigungsgraden unerwünschte mineralische Bestandteile, vor allem die Schwerminerale, mittels vorhandener Technik abgetrennt (Ausbringen nahezu 100 %) und anschließend in die Abbaue wieder zurückgeführt.

Im Hinblick auf eine künftige Abtrennung von Schwermineralen kann hier nicht pauschal eine optimale verfahrenstechnische Strategie aufgezeigt werden. Bedingt durch unterschiedliche Zielsetzungen zur Aufreinigung bzw. Abtrennung der gewünschten Rohstoffe unterscheiden sich die vorhandenen Anlagen nach Bauart, Leistung und Funktion. Dabei spielen weiterhin auch die Art des Rohstoffes, die örtlich geologischen, betriebswirtschaftlichen und strategischen Maßgaben eine wesentliche Rolle. Deswegen kann nur der Betreiber vor Ort, vertraut mit den anlagentechnischen Gegebenheiten entscheiden, welche zusätzlichen Anlagenmodule technisch und betriebswirtschaftlich am geeignetsten sind, wenn Schwerminerale im großtechnischen Stil mitgewonnen werden sollen.

Nach heutigem Kenntnisstand sind Hydrozyklone bzw. Wendelscheider, die mit vorhandener Anlagentechnik gut kombinierbar sind und / oder elektrostatische Abtrennungsanlagen die geeignetsten und erprobtesten Anlagenbauteile zur Abtrennung von Schwermineralen.

5 Vorräte, Rohstoffe und Wirtschaftlichkeit

5.1 Rohstoffpotenzial bei Ausschöpfung aller im Zuge der Regionalplanung und der Raumordnung genehmigten Flächen

Zur Eingrenzung des gesamten, mittel- bis langfristig nutzbaren Potenzials an SEE (und anderer verwertbarer Oxide) wurden für jede untersuchte stratigraphische Einheit alle relevanten Vorrangund Vorbehaltsgebiete (VR/VB) der aktuell gültigen Regionalpläne sowie alle genehmigten und geplanten Abbauflächen aus dem Raumordnungskataster hinsichtlich Größe und Potenzial untersucht (RIS-By, Luftbildauswertung, BIS-By).

In die Berechnung des Rohstoffpotenzials an Selten Erd Elementen und anderer Oxide wurden nur die Flächen bzw. Flächenanteile einbezogen, die heute noch als unverritzt angesehen werden können. Die Berechnungsgrundlage bilden die gemittelten Elementoxidgehalte (s. Kap. 4.1.8, Tab. 9) der jeweiligen Stratigraphien. Je nach den momentanen Abbauverhältnissen wurde pro Stratigraphie eine angepasste mittlere Abbautiefe ermittelt. Für die Vorratsberechnung wurde eine Dichte von 1,8 g/cm³ für den Sandrohstoff angenommen.

Buntsandstein

In den Regionalplänen sind momentan im Buntsandstein 15 Vorranggebiete mit einer Gesamtfläche von 1.631 ha ausgewiesen. Davon können 1.166 ha als unverritztes Potenzial angesehen werden. Des Weiteren gibt es 14 Vorbehaltsgebiete mit einer Gesamtfläche von 1.221 ha, wovon eine Fläche von 1.167 ha unverritzt ist. Darüber hinaus existieren noch 12 genehmigte bzw. geplante Abbaustellen (im Raumordnungskataster) mit einer Gesamtfläche von 159 ha. Der Großteil dieser Flächen befindet sich bereits innerhalb einer VR oder VB oder ist abgebaut und ergibt somit kein zusätzliches Flächenpotenzial, so dass nur 26 ha davon als unverritzt anzusehen sind.

Abbaubare Mächtigkeiten liegen zwischen 10 m und 60 m (aufgrund der sehr unterschiedlichen Abbausituationen vor Ort wurden hier die tatsächlichen Mächtigkeiten verwendet).

Flächenart	Fläche unver- ritzt (ha)	LREE (t)	HREE (t)	Zr-Oxid (t)	Ti-Oxid (t)
VR	1.166	24.000	2.700	61.000	161.700
VB	1.167	17.600	2.000	44.400	118.000
Abbaufläche	26	231	26	583	1.550
Gesamt	2.359	41.831	4.726	105.980	281.250

Tab. 12: Mögliche Ausbeute an SEE-Oxiden und weiteren wichtigen Element-Oxiden aus regionalplanerisch verbindlichen Gebieten und Flächen (Buntsandstein).

Wie aus Tab. 12 hervorgeht könnten aus allen regionalplanerisch und raumordnerisch festgelegten Flächen 41.831 t an LREE und 4.726 t an HREE im Zuge der Sand- bzw. Kaolingewinnung mitgewonnen werden. Daneben bieten die Sande des Buntsandstein ein großes Potenzial für die Beifanggewinnung von Zirkon- und Titanoxid.

Sandsteinkeuper

Die verschiedenen Sandsteine bzw. Mürbsandsteine im Sandsteinkeuper nehmen in den Regionalplänen momentan 13 Vorranggebiete mit einer Gesamtfläche von 281 ha ein. Aufgrund der aktuellen Bevorzugung von leichter abzubauenden Talsanden ist davon ein relativ großer Anteil mit 217 ha bis heute unverritzt. Dasselbe gilt für die 10 Vorbehaltsgebiete mit einer Gesamtfläche von 1.221 ha, wovon eine Fläche von 274 ha als unverritzt anzusehen ist. Darüber hinaus existiert noch eine Vielzahl genehmigter bzw. geplanter Abbaustellen im Raumordnungskataster (51 Flächen) mit einer Gesamtfläche von 306 ha. Aber auch hier ist der Großteil der Flächen innerhalb von VR- oder VB-Gebieten angesiedelt oder ist ausgebeutet, so dass sich nur ein kleines zusätzliches Flächenpotenzial von 93 ha ergibt.

Gemittelte Abbautiefe 10 m.

Tab. 13: Mögliche Ausbeute an SEE-Oxiden und weiteren wichtigen Element-Oxiden aus regionalplanerisch verbindlichen Gebieten und Flächen (Sandsteinkeuper).

Flächenart	Fläche unver- ritzt (ha)	LREE (t)	HREE (t)	Zr-Oxid (t)	Ti-Oxid (t)
VR	217	1.000	115	1.500	6.400
VB	274	1.400	150	1.900	8.000
Abbaufläche	93	460	50	630	2.700
Gesamt	584	2.860	315	4.030	17.100

Im Vergleich mit den gemittelten Ausbeuten (bei 100.000 t/a) könnten auf der Gesamtfläche von 584 ha ca. 2.860 t LREE bzw. 315 t HREE aus den Sanden/Mürbsandsteinen des Sandsteinkeuper gewonnen werden (Tab. 13). Der Zugewinn an Zr- und Ti-Oxiden ist im Vergleich zu den anderen untersuchten stratigraphischen Einheiten eher gering.

Sandsteinkeuper, Quartär

Im quartärzeitlich umgelagerten Sandsteinkeuper ist es schwer klar abzutrennende Flächen anzugeben. Deswegen wurde sich hier vor allem auf die Räume Pyras und Georgensgmünd bzw. Mischelbach beschränkt. Die Täler im Bereich des Sandsteinkeupers bieten über die genannten Gebiete hinaus noch einiges an Potenzial an quartären Talsanden, die im Zusammenhang mit umgelagerten Keuper bzw. Mürbsandsteinen gewonnen werden könnten.

In die Berechnung gingen 5 Vorranggebiete mit einer Gesamtfläche von 378 ha ein. Davon unverritzt ist knapp die Hälfte mit 187 ha. Darüber hinaus existieren noch 3 Vorbehaltsgebiete mit 145 ha, wovon noch 87 ha als unverritztes Potenzial angesehen werden können. Zudem sind im Raumordnungskataster 45 genehmigte bzw. geplante Abbauflächen aufgeführt, die insgesamt eine Fläche von 334 ha ausmachen. Wie bei den schon besprochenen stratigraphischen Einheiten ist auch hiervon nur ein Bruchteil als tatsächliches Potenzial von ca. 27 ha anzusehen.

Gemittelte Abbautiefe 5 m.

Tab. 14: Mögliche Ausbeute an SEE-Oxiden und weiteren wichtigen Element-Oxiden aus regionalplanerisch verbindlichen Gebieten und Flächen (Sandsteinkeuper, Quartär).

Flächenart	Fläche unver- ritzt (ha)	LREE (t)	HREE (t)	Zr-Oxid (t)	Ti-Oxid (t)
VR	187	720	75	1.100	3.000
VB	87	330	35	515	1.400
Abbaufläche	27	100	10	160	430
Gesamt	301	1.150	120	1.775	4.830

Der mögliche Beifang an Selten Erd Elementen und anderen verwertbaren Oxiden (Tab. 14) bei der Sandgewinnung ist im quartärzeitlich umgelagerten Sandsteinkeuper von allen untersuchten Einheiten am geringsten (Tab. 18). Ausschlaggebend hierfür ist die geringe Abbautiefe und die kleine Flächengröße.

Rhätolias

Für die stratigraphische Einheit des Rhätolias sind im Regionalplan momentan 8 Vorranggebiete (mit 145 ha) und 7 Vorbehaltsgebiete (mit 162 ha) ausgewiesen. Davon sind 122 ha an VR bzw. 153 ha an VB noch nicht abgebaut. Darüber hinaus weist das Raumordnungskataster noch 15 Abbauflächen mit 85 ha aus, davon mit ca. 25 ha unverritztem Potenzial.

Gemittelte Abbautiefe 15 m.

Tab. 15: Mögliche Ausbeute an SEE-Oxiden und weiteren wichtigen Element-Oxiden aus regionalplanerisch verbindlichen Gebieten und Flächen (Rhätolias).

Flächenart	Fläche unver- ritzt (ha)	LREE (t)	HREE (t)	Zr-Oxid (t)	Ti-Oxid (t)
VR	122	1.600	200	3.000	14.400
VB	153	2.000	250	3.900	18.200
Abbaufläche	25	335	40	625	3.000
Gesamt	300	3.935	490	7.525	35.600

Trotz der vergleichbaren Flächengröße zum quartärzeitlich umgelagerten Sandsteinkeuper ergeben sich für den Rhätolias aufgrund der größeren möglichen Abbautiefe und der leicht erhöhten mittleren Oxidmengen (s. Tab. 9) deutlich größere Ausbeuten an LREE und HREE. Auch der Gehalt an Ti-Oxid ist noch recht hoch (Tab. 15).

Dogger

Die Sandsteine des Dogger Beta streichen im Gegensatz zu den anderen behandelten stratigraphischen Einheiten nur relativ kleinräumig an der Oberfläche aus. Dem Rechnung tragend sind auch in den Regionalplänen nur wenige Gebiete verzeichnet. Nichts desto trotz ist der Dogger Beta in seiner sandigen Ausbildung ein wichtiger Sandlieferant. Momentan gibt es 2 Vorranggebiete mit der beachtlichen Größe von 455 ha, wovon der Großteil 385 ha bislang noch ungenutzt ist. An Vorbehaltsgebieten sind im Regionalplan 4 Flächen mit 530 ha verzeichnet. Auch hier ist der Großteil von 502 ha als unverritztes Potenzial anzusehen. Des Weiteren existieren noch 12 genehmigte bzw. geplante Abbaustellen (im Raumordnungskataster) mit einer Gesamtfläche von 187 ha. Im Gegensatz zu den anderen stratigraphischen Einheiten liegen diese zum Großteil nicht innerhalb einer VR oder VB, so dass 120 ha davon als unverritzt anzusehen sind.

Gemittelte Abbautiefe 30 m.

Flächenart	Fläche unver- ritzt (ha)	LREE (t)	HREE (t)	Zr-Oxid (t)	Ti-Oxid (t)
VR	385	3.800	890	103.300	348.900
VB	502	4.900	1.200	134.700	455.400
Abbaufläche	120	1.200	280	32.200	108.800
Gesamt	1.007	9.900	2.370	270.200	913.100

Tab. 16: Mögliche Ausbeute an SEE-Oxiden und weiteren wichtigen Element-Oxiden aus regionalplanerisch verbindlichen Gebieten und Flächen (Dogger).

Neben dem Buntsandstein liegen in den ausgezeichneten Flächen die größten Potenziale an Leichten und Schweren Selten Erd Elementen (Tab. 19). Darüber hinaus besitzen die Sande bzw. Mürbsandsteine des Dogger Beta die größten Gehalte an Ti-Oxid (über 900.000 t) und untergeordnet an Zr-Oxid (Tab. 16).

Kreide

Die Kreide streicht zwar großflächig aus, ist aufgrund ihres heterogenen Aufbaus aus Kiesen, Sanden, Sandsteinen und Tonen schwer abzugrenzen. Im Regionalplan ist nur ein Vorranggebiet mit 47 ha verzeichnet, das bis heute noch unverritzt ist. Dazu kommen noch 7 Vorbehaltsgebiete mit 149 ha Gesamtfläche und 112 ha unverritztem Potenzial. Von den 221 ha genehmigten und geplanten Abbauflächen sind noch 76 ha nicht abgebaut. Die potenziellen Abbauflächen werden von vielen VR / VB für die Wasserversorgung überlagert bzw. begrenzt, so dass sie im Hinblick auf eine zukünftige Nutzung eingeschränkt sind.

Gemittelte Abbautiefe 15 m.

Tab. 17: Mögliche Ausbeute an SEE-Oxiden und weiteren wichtigen Element-Oxiden aus regionalplanerisch verbindlichen Gebieten und Flächen (Kreide).

Flächenart	Fläche unver- ritzt (ha)	LREE (t)	HREE (t)	Zr-Oxid (t)	Ti-Oxid (t)
VR	47	510	65	2.600	9.800
VB	112	1.200	150	6.100	23.100
Abbaufläche	76	820	100	4.200	15.600
Gesamt	235	2.530	315	12.900	48.500

In der Kreide sind zurzeit relativ wenig Flächen in den Regionalplänen ausgewiesen. Würde man diese abbauen, ergäbe sich so neben dem quartärzeitlich umgelagerten Sandsteinkeuper die kleinste Menge an gewinnbaren Selten Erd Elementen. Im Gegensatz dazu enthalten die Schichten aber relativ viel Ti- und Zr-Oxid (Tab. 17 und Tab. 18).

In Tab. 18 sind alle Summenwerte zur Übersicht zusammengefasst und dargestellt. Es wird deutlich, dass schon wegen der Flächengröße (sowie der gewinnbaren Mächtigkeit des Sandrohstoffes) die Rohstoffgebiete im Buntsandstein gefolgt von denen des Dogger Beta und des Rhätolias die größten Potenziale an Selten Erd Elementen- sowie an Ti- bzw. Zr-Oxiden aufweisen.

Flächenart	Fläche unver- ritzt (ha)	LREE (t)	HREE (t)	Zr-Oxid (t)	Ti-Oxid (t)
sm	2.359	41.831	4.726	105.980	281.250
kms	584	2.860	315	4.030	17.100
kms,q	301	1.150	120	1.775	4.830
kol	300	3.935	490	7.525	35.600
db	1.007	9.900	2.370	270.200	913.100
kro	235	2.530	315	12.900	48.500
Gesamt	4.786	62.206	8.336	402.410	1.300.380

Tab. 18: Vergleich der stratigraphischen Einheiten (mittlere Oxidgehalte).

5.2 Positiv-Kriterien der Beifang-Gewinnung aus vorhandenen Abbaustellen

Unabhängig von o.g. zukünftig nutzbaren, mittel- und langfristigen Rohstoff-Potenzialen lassen sich folgende Positiv-Kriterien für die Beifang-Gewinnung von Schwermineralkonzentraten aufführen:

Die Gewinnung kann an vorhandenen, genehmigten Sand-Abbauen durchgeführt werden, sie ist damit unabhängig von weiteren erforderlichen Erteilungen bzw. Genehmigungen.

Es ist kein untertägiger Abbau erforderlich, weitere Eingriffe in Naturraum bzw. Landschaft sind nicht notwendig.

Da viele der Betriebe in regionalplanerisch festgelegten Rohstoff-Vorrang- bzw. –Vorbehaltsgebieten mit entsprechenden Erweiterungspotenzialen operieren handelt es sich quasi um ortsfeste, langfristig gesicherte Gewinnungsstellen bzw. auch um langfristig nutzbare Lagerstätten.

Die einzelnen Betreiber haben dadurch auch perspektivisch eine langfristige betriebliche Grundlage und Rohstoffsicherheit, die getätigte oder zu tätigende Investitionen rechtfertigen.

Das vorhandene rohstoffliche Potenzial kann nachhaltig und weitgehend vollständig ausgeschöpft, genutzt und vermarktet werden.

Eine betriebliche Infrastruktur ist an den einzelnen Abbaustellen vorhanden und benötigt keine weiteren bzw. größeren Investitionen.

Die technische Aufrüstung vorhandener Anlagentechnik im Hinblick auf eine mechanische Schwermineralabtrennung macht im Einzelfall nur überschaubare Investitionen notwendig.

Die Technologie zur Schwermineralabtrennung ist robust, langlebig, erprobt und technisch leicht mit vorhandener Anlagentechnik verbaubar.

Nach Installation erforderlicher Anlagenteile zur Schwermineralabtrennung bei schon bestehenden Sandwäschen könnte unmittelbar mit der Beifang-Gewinnung begonnen werden.

Im Hinblick auf den unternehmerischen Schwerpunkt (Sandabbau bzw. auch Kaolingewinnung), kann die Beifang-Gewinnung jedoch nur dann betrieben werden, wenn das Kerngeschäft floriert. Dies verweist zum einen direkt auf die Notwendigkeit der regionalplanerischen Rohstoffsicherung, zum anderen auf eine künftige stabile Absatzsituation im Kerngeschäft (z. B. für die Bauwirtschaft). Nur im po-

sitiven Zusammenspiel beider Faktoren sind neben den vorab zu klärenden betriebswirtschaftlichen Fragen künftig auch mögliche Perspektiven für die Beifang-Gewinnung zu sehen.

Dabei sollte, bezogen auf die raumordnerisch gesicherten, hier behandelten Rohstoff-Gebiete für Sand, ihre vermeintlich große Fläche nicht täuschen. Die betrachteten Rohstoff-Vorrang- und -Vorbehalts-Gebiete sowie die genehmigten Abbauflächen nehmen insgesamt ca. 4.786 ha Fläche ein. An der Gesamtfläche Bayerns mit 7.055.300 ha sind damit diese relevanten Rohstoff-Flächen nur mit (überschaubaren) 0,068 % vertreten.

5.3 Negativ-Kriterien für die Beifang-Gewinnung

Als Einschränkungen bzw. mögliche Ausschlußkriterien gelten demgegenüber:

Je nach Vorhandensein und / oder Anlagenart können auch zusätzliche Investitionen für komplett neue, dezentrale Aufbereitungsanlagen zur Schwermineralgewinnung notwendig werden (Folge: weitere unternehmerische Investitionen).

Für eine Nutzbarmachung bzw. anschließende Vermarktung der gewinnbaren Oxide ist der Aufbau und Betrieb einer zentralen Raffination zur Aufarbeitung von Schwermineralkonzentraten aus verschiedenen Betriebspunkten erforderlich. Diese Anlage und ihre langfristige Effizienz hängen maßgeblich von der betriebswirtschaftlichen Situation und Zielrichtung mehrerer Einzelunternehmer ab.

Die Rentabilität (von Gewinnung bis zur Raffination) ist zudem wesentlich abhängig von der künftigen Preis- und Angebots-Entwicklung von SEE- und anderen Oxiden auf den Weltmärkten.

Die erzielbaren Beifang-Mengen sind in entscheidender Weise von der künftigen konjunkturellen Entwicklung (vor allem im Bausektor) in Bayern bzw. letztlich auch von der Menge der jährlich abgebauten Sandrohstoffe bzw. der Kaolin-Roherde abhängig.

5.4 Nutzung des Schwermineralpotenzials von Schlämmteichen

Wie schon im Kapitel 4.2.2 aufgezeigt stellen einige der vorhandenen Absetzbecken und Schlämmteiche kleinere "Lagerstätten" für SEE sowie für Titan- und Zirkonium-Oxid dar. Sofern nicht mit Aushubmaterial überdeckt und/oder im Zuge von Rekultivierungsmaßnahmen wieder verzogen, wären vor allem die des Buntsandsteins zur Rück-Gewinnung o.g. Stoffe aus den Schlämmen geeignet. Dieser Arbeitsschritt erscheint jedoch erst dann sinnvoll, wenn der Gewinnungs-Prozess von Sand an den jeweiligen Abbaustellen weitgehend abgeschlossen ist und die jeweilige Aufbereitungsanlage nur zur Abtrennung der Schwerminerale eingesetzt werden kann. Die separierten Schlämme könnten nach ihrer Aufbereitung ggf. in die ausgesandeten Bereiche zurückgeführt werden. Würde zudem zeitnah eine direkte Schwermineralabtrennung aus "laufender Produktion" bei o.g. "höffigen" Betrieben veranlasst werden, könnten die vorhandenen, noch Schwermineral-führenden Schlämmteiche als quasi "stille Reserve" für eine künftig folgende Abtrennung verwendet werden.

5.5 Gesamtabwägung der Wirtschaftlichkeit

Wird die aktuelle und prognostische Preissituation für verwertbare Oxide (SEE, Titan und eventuell Zirkonium) auf den Weltmärkten betrachtet, muss neben vielen Hoch- und Tiefpreisphasen der letzten Jahre insgesamt von einem stetigen Aufwärtstrend vor allem bei den SEE gesprochen werden, der Ende 2010 infolge der Verringerung der chinesischen Exporte zu einer Preisexplosion führte (Abb. 72, Abb. 73). Da weiterhin von einem bedeutenden Nachfragewachstum für SEE ausgegangen werden muss, können künftig auch entsprechend gesteigerte Produktionsmengen aus laufenden Bergbauprojekten der östlichen und aus neuen der westlichen Welt erwartet werden. Vor diesem wirtschaftlich-strategisch-politischen Hintergrund werden zusätzlich auch ins Leben gerufene Maßnahmen zur effizienten Nutzung von SEE und deren Recycling mittelfristig greifen, so dass, insgesamt betrachtet, künftig von einer gewissen Normalisierung der Angebots- und Preissituation bei den SEE ausgegangen werden kann.

Abb. 72: Preisentwicklung ausgewählter Leichter Selten Erd Elemente (Oxide) (kompiliert nach Schüler (2011), DERA (2013) und Seltenerdmetalle 24).

Abb. 73: Preisentwicklung ausgewählter Schwerer Selten Erd Elemente (Oxide) (kompiliert nach Schüler (2011), DERA (2013) und Seltenerdmetalle 24).

Nach Erhebung des Öko-Institutes 2011 (SCHÜLER 2011) importierte Europa 2008 insgesamt 23.013 t Metalle, Mischungen oder Legierungen als SEE-Oxide, 90 % davon stammten aus China. Deutschland nahm dabei für die eigene Wirtschaft ca. 8 % ab, d.h. ca. 1.841 t SEE-Oxide mit einem damaligen Wert von ca. 200 Mio. Euro. Laut Rohstoffwirtschaftlichem Steckbrief Seltene Erden (BGR, 2013) betrug die Nachfrage (Importvolumen) Deutschlands 2011 an SEE-Verbindungen und

SEE-Metallen insgesamt ca. 8.500 t. Nach ELSNER (2011) richtet sich die globale Nachfrage überwiegend auf Yttrium, Samarium und Lanthan (Leichte SEE) sowie auf Europium, Terbium und Dysprosium (Schwere SEE). Die weltweite Nachfrage für 2015 wird hierbei prognostisch mit 12.700 t Y-Oxid, 1.400 t Sm-Oxid, 775 t Eu-Oxid, 500 t Tb-Oxid sowie 3.000 t Dy-Oxid angegeben (insgesamt ca. 7.600 t SEE-Metalle).

Aus den in Kapitel 4.2.1 aufgeführten, potenziell und ad hoc jährlich gewinnbaren SEE-Oxiden aus bayerischen Sand-Lagerstätten (insgesamt ca. 218 t LREE-Oxide, ca. 25 t HREE-Oxide, ca. 998 t Zr-Oxid sowie 2.915 t Ti-Oxid) ließen sich demnach allein ca. 55,5 t Ce-Oxid, 45,5 t Nd-Oxid, 38,6 t Y-Oxid, 8,5 t Sm-Oxid, 53,0 t La-Oxid, 0,39 t Eu-Oxid, 1,0 t Tb-Oxid sowie 5,9 t Dy-Oxid jährlich produzieren. Der Wert dieser pro Förderjahr gewinnbaren SEE-Oxide entspräche damit nach heutigen Weltmarkpreisen ca. 9,98 Mio. Euro (Preise nach "Durchschnitt 9/2012-8/2013", DERA Preisliste 2013). Das ebenfalls gewinnbare Titan-Oxid ist mit einem Wert von ca. 9,82 Mio. Euro pro Jahr zu veranschlagen, für Zr-Oxid (umgerechnet als Mineral Zirkon) resultiert derzeit ein Marktwert von ca. 1,89 Mio. Euro.

Der Gesamtinhalt der Schlämmteiche an SEE- sowie an Titan- und Zirkon-Oxiden stellt nach obigem Preisspiegel einen Wert von ca. 42,4 Mio. Euro für die SEE, ca. 17,6 Mio. Euro für Titan-Oxid sowie ca. 4,4 Mio. Euro für Zr-Oxid (umgerechnet als Mineral Zirkon) dar.

In Anbetracht dieser Größenordnungen erscheint im Einzelfall eine Prüfung der technisch-organisatorisch-betrieblichen Machbarkeit einer Schwermineralgewinnung in jedem Fall angezeigt.

6 Prognose

Die überwiegende Anzahl der untersuchten Betriebe operiert auf ausgewiesenen Rohstoff-Vorrang-/Vorbehaltsgebieten bzw. auf genehmigten Abbauflächen mit entsprechenden Erweiterungspotenzialen, die vom rohstofflichen Standpunkt aus bis auf wenige Ausnahmen, eine mittel- bis langfristige Betriebssicherheit gewährleisten. Demzufolge können vor allem die größeren Gewinnungsstellen samt jeweiliger Aufbereitung, die dadurch über größere Zeitspannen (Jahrzehnte) abbauen können, als quasi ortsfeste Betriebe gewertet werden. Bleibt es bei den jetzigen Größenordnungen an Abbau- und Fördermengen und werden entsprechende Aufbereitungsanlagen nachgerüstet entsteht ein mittel- bis langfristig nutzbares, wenn auch überschaubares Potenzial an Schwermineralkonzentraten, das, ausgehend von der jetzigen globalen Rohstoffsituation, eine gewisse wirtschaftliche Bedeutung über Jahrzehnte für Bayern erlangen könnte.

Eine künftige Wirtschaftlichkeit ist hierbei entscheidend abhängig von der weiteren Preisentwicklung für SEE (und anderer Oxide) auf den Weltmärkten und der betriebswirtschaftlichen Gesamtsituation und Perspektive einzelner Unternehmer bzw. von Unternehmensverbünden. Aus heutiger Sicht jedoch erscheint eine Beifang-Gewinnung, auch unter Investition in zusätzliche Gewinnungsund Aufbereitungstechniken, sinnvoll. Dies trifft vor allem auf die "großen" Abbauunternehmen zu.

Im Einzelfall ist dabei abzuklären, ob die zusätzliche (oder ausschließliche ?) Mitgewinnung von Titanoxiden das unternehmerische Risiko senken und den betriebswirtschaftlichen Nutzen sowie insgesamt die Rentabilität steigern könnte. Da die Technologie der Schwermineralabtrennung an einigen Betriebspunkten schon langjährig im Einsatz, technisch ausgereift und bewährt ist, kann auf dieses vorhandene Wissen bei der Konzeptionierung neu erforderlicher Anlagen bzw. Anlagenteile zurückgegriffen werden. Aus technischer Sicht ist eine Schwermineralabtrennung im großen Stil auf dieser Grundlage uneingeschränkt möglich.

Nach Abwägung o.g. Positiv- und Negativ-Kriterien sowie aus heutiger wirtschaftlicher Sicht kann daher eine Beifang-Gewinnung inklusive einer Separation von Schwermineralen aus Schlämmteichen sowie deren Weiterverarbeitung sinnvoll sein und im Sinne einer nachhaltigen Lagerstätten-Nutzung empfohlen werden.

7 Zusammenfassung

Im Zuge der Untersuchung konnten kurz- bis langfristig nutzbare Potenziale von Selten Erd Elementen und anderen gesuchten high-tech – Metalloxiden gefunden werden, die unter Berücksichtigung der aktuellen und vermutlich auch künftigen Weltmarktsituation sehr wahrscheinlich als fündig im Hinblick auf eine wirtschaftliche Gewinnung eingestuft werden können.

8 Literatur

- BAYERISCHES GEOLOGISCHES LANDESAMT (1996): Geologische Karte von Bayern, 1 : 500.000. 4. Aufl., München.
- BERGER, K. (1979): Erläuterungen zur Geologischen Karte von Bayern, 1 : 25.000, Blatt 6633 Feucht. – 121 S., Bayerisches Geologisches Landesamt, München.
- BOENIGK, W. (1983): Schwermineralanalyse. 152 S., Enke, Stuttgart.
- BGR BUNDESANSTALT FÜR GEOWISSENSCHAFTEN UND ROHSTOFFE (2013): Rohstoffwirtschaftliche Steckbriefe Seltene Erden. 7 S., Hannover.
- DEER, W.A., HOWIE, R.A. & ZUSSMAN, J. (1980): An introduction to the rock forming minerals. 528 S., London (Longman).
- DERA (2013): Rohstoffpreisliste, BGR, Hannover; www.bgr.bund.de/SharedDocs/GT_Produkte/ Mineral_Rohstoffe/CPL_alle-genTab_DE.html?nn = 1542306
- ELSNER, H. (2006): Bewertungskriterien für Industrieminerale, Steine und Erden, Teil 12: Schwerminerale. Geol.Jb. Reihe H, Heft 13, 143 S., Hannover.
- ELSNER, H. (2010): Heavy minerals of economic importance. Assessment Manual, 218 S., 31 Abb., 125 Tab., BGR, Hannover.
- ELSNER, H. (2011): Commodity top news, Nr. 36; Kritische Versorgungslage mit schweren Seltenen Erden – Entwicklung "Grüner" Technologien gefährdet ?. 8 S., BGR, Hannover.
- ELSNER, H. (2013): Zircon insufficient supply in the future ? DERA Rohstoffinformationen, 14, 289 S., Berlin.
- FREUDENBERGER, W. und Schwerd, K. (1996): Erläuterungen zur Geologischen Karte von Bayern 1 : 500 000. 4. Aufl., 329 S., Bayerisches Geologisches Landesamt, München.
- GLASER, S., DOPPLER, G. und SCHWERD, K. (2004): GeoBavaria 600 Millionen Jahre Bayern. 92 S., Bayerisches Geologisches Landesamt, München.
- HENDERSON, P. (ed.) (1984): Rare Earth Element Geochemistry. 510 S., Elsevier, Amsterdam-Oxford-New York-Tokyo.
- JAHNKE, A. (2012): Weißes Gold: Kaolin aus der Oberpfalz für Papier und Porzellan. dpa-Pressemitteilung 11.06.2012, über Bayerische Staatskanzlei (agenturen@stk.bayern.de).
- KLAUS, G., KRÖCK, H.-J. und STRÜBEL, G. (1985): Schwermineral-Aufbereitung im Hirschau-Schnaittenbacher Kaolinrevier. – Keramische Z., 37. Jg., Nr. 1, S. 15-17.
- KNEBEL, C. (2004): Untersuchungen zum Einfluss Seltener Erd-Citrate auf Leistungsparameter beim

Schwein und die ruminale Fermentation im künstlichen Pansen (RUSITEC). - Dissertation, 146 S., LMU, München.

- LINHARDT, E. & DITTRICH, R. (1999): Analytische Multielement-Methoden am Bayerischen Geologischen Landesamt; Teil III: Bestimmungen der Seltenerd-Elemente in Gesteinen und Mineralen aus Gesamtaufschlußlösungen mittels ICP-MS. - Geologica Bavarica 104, S. 105-116, Bayerisches Geologisches Landesamt, München.
- SCHÖNE, I. (2009): Untersuchungen zur Wirksamkeit von Seltenen Erden beim Ferkel und Darstellung der gesetzlichen Grundlagen hinsichtlich der Zulassung von Futtermittelzusatzstoffen. - Dissertation, 149 S., LMU, München.

SCHÜLER, D. (2011): Hintergrundpapier Seltene Erden.- 7 S., Ökoinstitut, Berlin.

SELTENERDMETALLE 24: www.seltenerdmetalle24.de/chartcenter

WEINIG, H., DOBNER, A., LAGALLY, U., STEPHAN, W., STREIT, R. und WEINELT, W. (1984): Oberflächennahe mineralische Rohstoffe von Bayern. - Geologica Bavarica 86, 563 S., Bayerisches Geologisches Landesamt, München.

Abbildungsverzeichnis

Abb. 1:	Arbeitsgebiet mit Untersuchungsräumen.	11
Abb. 2:	Schlitzprobennahme.	12
Abb. 3:	Haufwerksprobennahme.	12
Abb. 4:	Vorabsiebung im Gelände.	12
Abb. 5:	Geologische Übersicht mit Lagepunkten der beprobten Gewinnungsstellen im Buntsandstein (angepasster Ausschnitt aus GK500, BAYERISCHES GEOLOGISCHES LANDESAMT 1996).	14
Abb. 6:	Geologische Übersicht mit Lagepunkten der beprobten Gewinnungsstellen im Sandsteinkeuper und quartärzeitlich umgelagerten Sandsteinkeuper sowie im Rhätolias (angepasster Ausschnitt aus GK500, BAYERISCHES GEOLOGISCHES LAN- DESAMT 1996).	14
Abb. 7:	Geologische Übersicht mit Lagepunkten der beprobten Gewinnungsstellen im Dogger β (angepasster Ausschnitt aus GK500, Bayerisches Geologisches Landesamt 1996).	15
Abb. 8:	Geologische Übersicht mit Lagepunkten der beprobten Gewinnungsstellen in der Kreide (angepasster Ausschnitt aus GK500, Bayerisches Geologisches Landes- AMT 1996).	15
Abb. 9:	Siebung der Rohproben im Labor mittels Siebmaschine.	16
Abb. 10:	Abtrennung von Schwermineralen mittels Sink-Schwimm-Verfahren.	16
Abb. 11:	Schema zur Ermittlung der potenziell ausbringbaren Stoffgehalte aus Schwermi- neral-Konzentraten.	18
Abb. 12:	Kornsummencharakteristik Buntsandstein.	21
Abb. 13:	Schwermineralgehalt (Gew%) im Bereich 2 bis 1.000 μm im Buntsandstein.	21
Abb. 14:	SEE-Verteilungsmuster im Buntsandstein.	22
Abb. 15:	Verteilung Leicht- und Schwerminerale im Buntsandstein.	22
Abb. 16:	Schwermineralzusammensetzung im Buntsandstein.	22
Abb. 17:	Verteilung Leicht- und Schwerminerale im Buntsandstein.	22
Abb. 18:	Schwermineralzusammensetzung im Buntsandstein.	22
Abb. 19:	Boxplot Buntsandstein Schwermineralausbeute.	23

Abb. 20:	Mittlere Ausbeute an Leichten (LREE) und Schweren (HREE) SEE-Oxiden im Buntsandstein.	24
Abb. 21:	Mittlere Ausbeute an Zirkonium- und Titan-Oxid im Buntsandstein.	25
Abb. 22:	Kornsummencharakteristik Sandsteinkeuper.	26
Abb. 23:	Schwermineralgehalt (Gew%) im Bereich 2 bis $1.000 \mu\text{m}$ im Sandsteinkeuper.	26
Abb. 24:	SEE-Verteilungsmuster im Sandsteinkeuper.	27
Abb. 25:	Verteilung Leicht- und Schwerminerale im Sandsteinkeuper.	27
Abb. 26:	Schwermineralzusammensetzung im Sandsteinkeuper.	27
Abb. 27:	Verteilung Leicht- und Schwerminerale im Sandsteinkeuper.	27
Abb. 28:	Schwermineralzusammensetzung im Sandsteinkeuper.	27
Abb. 29:	Boxplot Sandsteinkeuper Schwermineralausbeute.	28
Abb. 30:	Mittlere Ausbeute an Leichten (LREE) und Schweren (HREE) SEE-Oxiden im Sandsteinkeuper.	29
Abb. 31:	Mittlere Ausbeute an Zirkonium- und Titan-Oxid im Sandsteinkeuper.	30
Abb. 32:	Kornsummencharakteristik quartärzeitlich umgelagerter Sandsteinkeuper.	31
Abb. 33:	Schwermineralgehalt (Gew%) im Bereich 2 bis 1.000 µm im quartärzeitlich um- gelagerten Sandsteinkeuper.	31
Abb. 34:	SEE-Verteilungsmuster im quartärzeitlich umgelagerten Sandsteinkeuper.	32
Abb. 35:	Leicht- und Schwermineralverteilung im quartärzeitlich umgelagerten Sandsteinkeuper.	32
Abb. 36:	Schwermineralzusammensetzung im quartärzeitlich umgelagerten Sandsteinkeuper.	32
Abb. 37:	Leicht- und Schwermineralverteilung im quartärzeitlich umgelagerten Sandsteinkeuper.	32
Abb. 38:	Schwermineralzusammensetzung im quartärzeitlich umgelagerten Sandsteinkeuper.	32
Abb. 39:	Boxplot Sandsteinkeuper, quartärzeitlich umgelagert; Schwermineralausbeute.	33
Abb. 40:	Mittlere Ausbeute an Leichten (LREE) und Schweren (HREE) SEE-Oxiden im quartärzeitlich umgelagerten Sandsteinkeuper.	34
Abb. 41:	Mittlere Ausbeute an Zirkonium- und Titan-Oxid im quartärzeitlich umgelagerten Sandsteinkeuper.	35
Abb. 42:	Kornsummencharakteristik Rhätolias.	36

Abb. 43:	Schwermineralgehalt (Gew%) im Bereich 2 bis 1.000 μm im Rhätolias.	36
Abb. 44:	SEE-Verteilungsmuster im Rhätolias.	37
Abb. 45:	Leicht- und Schwermineralverteilung im Rhätolias.	37
Abb. 46:	Schwermineralzusammensetzung im Rhätolias.	37
Abb. 47:	Leicht- und Schwermineralverteilung im Rhätolias.	37
Abb. 48:	Schwermineralzusammensetzung im Rhätolias.	37
Abb. 49:	Boxplot Rhätolias Schwermineralausbeute.	38
Abb. 50:	Mittlere Ausbeute an Leichten (LREE) und Schweren (HREE) SEE-Oxiden im Rhätolias.	39
Abb. 51:	Mittlere Ausbeute an Zirkonium- und Titan-Oxid im Rhätolias.	40
Abb. 52:	Kornsummencharakteristik Dogger β.	41
Abb. 53:	Schwermineralgehalt (Gew%) im Bereich 2 bis 1.000 μm im Dogger β (hier ge-änderte Y-Achse).	41
Abb. 54:	SEE-Verteilungsmuster im Dogger β.	42
Abb. 55:	Leicht- und Schwermineralverteilung im Dogger β.	42
Abb. 56:	Schwermineralzusammensetzung im Dogger β.	42
Abb. 57:	Leicht- und Schwermineralverteilung im Dogger β.	43
Abb. 58:	Schwermineralzusammensetzung im Dogger β.	43
Abb. 59:	Boxplot Dogger β Schwermineralausbeute (hier geänderte Y-Achse).	43
Abb. 60:	Mittlere Ausbeute an Leichten (LREE) und Schweren (HREE) SEE-Oxiden im Dogger $\boldsymbol{\beta}.$	44
Abb. 61:	Mittlere Ausbeute an Zirkonium- und Titan-Oxid im Dogger β .	45
Abb. 62:	Kornsummencharakteristik Kreide.	46
Abb. 63:	Schwermineralgehalt (Gew%) im Bereich 2 bis 1.000 μm in der Kreide.	46
Abb. 64:	SEE-Verteilungsmuster in der Kreide.	47
Abb. 65:	Leicht- und Schwermineralverteilung in der Kreide.	47
Abb. 66:	Schwermineralzusammensetzung in der Kreide.	47

Abb. 67:	Leicht- und Schwermineralverteilung in der Kreide.	48
Abb. 68:	Schwermineralzusammensetzung in der Kreide.	48
Abb. 69:	Boxplot Kreide Schwermineralausbeute.	48
Abb. 70:	Mittlere Ausbeute an Leichten (LREE) und Schweren (HREE) SEE-Oxiden in der Kreide.	49
Abb. 71:	Mittlere Ausbeute an Zirkonium- und Titan-Oxid in der Kreide.	50
Abb. 72:	Preisentwicklung ausgewählter Leichter Selten Erd Elemente (Oxide) (kompiliert nach Schüler (2011), DERA (2013) und Seltenerdmetalle 24).	62
Abb. 73:	Preisentwicklung ausgewählter Schwerer Selten Erd Elemente (Oxide) (kompiliert nach Schüler (2011), DERA (2013) und Seltenerdmetalle 24).	62
Abb. 74:	Sandgrube NE Mischelbach, Luftbild 2002.	95
Abb. 75:	Sandgrube NE Mischelbach, Luftbild 2005.	95
Abb. 76:	Sandgrube NE Mischelbach, Luftbild 2009.	95
Abb. 77:	Sandgrube NE Mischelbach, Luftbild 2011.	95
Abb. 78:	Sandgrube NE Mischelbach, Digitales Gelände Modell (5m).	96
Abb. 79:	Sandgrube NE Mischelbach, TK25.	96
Abb. 80:	Resultat (aktuelles Luftbild und Schlämmteichflächen (blau).	96
Tabellenverzeichnis

Tab. 1:	Lage der Gewinnungsstellen mit Abbaustatus und Stratigraphie (GK 25) sowie An- zahl der Proben.	12
Tab. 2:	Häufigkeiten (Konzentrationen, in ppm) der SEE in kohligen, chondritischen Mete- oriten (C 1). Quelle: EVENSEN et al. (1978), in: HENDERSON (1984); sie entsprechen den Normalisierungsfaktoren für unten folgende Grafiken (siehe Abb. 14, 24, 34, 44, 54 und 64 sowie Gl. 1).	20
Tab. 3:	Mittlere Schwermineralausbeuten auf Grundlage einer Jahresförderleistung von jeweils 100.000 t Sandrohstoff für Gewinnungsstellen im Buntsandstein.	23
Tab. 4:	Mittlere Schwermineralausbeuten auf Grundlage einer Jahresförderleistung von jeweils 100.000 t Sandrohstoff für Gewinnungsstellen im Sandsteinkeuper.	28
Tab. 5:	Mittlere Schwermineralausbeuten auf Grundlage einer Jahresförderleistung von jeweils 100.000 t Sandrohstoff für Gewinnungsstellen im quartärzeitlich umgela- gerten Sandsteinkeuper.	33
Tab. 6:	Mittlere Schwermineralausbeuten auf Grundlage einer Jahresförderleistung von jeweils 100.000 t Sandrohstoff für Gewinnungsstellen im Rhätolias.	39
Tab. 7:	Mittlere Schwermineralausbeuten auf Grundlage einer Jahresförderleistung von jeweils 100.000 t Sandrohstoff für Gewinnungsstellen im Dogger β.	44
Tab. 8:	Mittlere Schwermineralausbeuten auf Grundlage einer Jahresförderleistung von jeweils 100.000 t Sandrohstoff für Gewinnungsstellen in der Kreide.	49
Tab. 9:	Mittlere gewinnbare Oxidmengen (Mediane) nach Stratigraphie, bezogen auf 100.000 t geförderten Sandrohstoff.	51
Tab. 10:	Übersicht der gesamt gewinnbaren Oxidmengen pro Jahr auf Grundlage der tat- sächlichen jeweiligen Jahresförderleistung Sandrohstoff, gegliedert nach stratigra- phischer Einheit; kursiv: hochgerechnete Angaben (s. a. Angang D).	52
Tab. 11:	Inhalt Schlämmteiche, gegliedert nach Stratigraphie und unter Angabe der Teil- summenwerte.	53
Tab. 12:	Mögliche Ausbeute an SEE-Oxiden und weiteren wichtigen Element-Oxiden aus regionalplanerisch verbindlichen Gebieten und Flächen (Buntsandstein).	56
Tab. 13:	Mögliche Ausbeute an SEE-Oxiden und weiteren wichtigen Element-Oxiden aus regionalplanerisch verbindlichen Gebieten und Flächen (Sandsteinkeuper).	57
Tab. 14:	Mögliche Ausbeute an SEE-Oxiden und weiteren wichtigen Element-Oxiden aus regionalplanerisch verbindlichen Gebieten und Flächen (Sandsteinkeuper, Quartär).	57

Tab. 15:	Mögliche Ausbeute an SEE-Oxiden und weiteren wichtigen Element-Oxiden aus regionalplanerisch verbindlichen Gebieten und Flächen (Rhätolias).	58
Tab. 16:	Mögliche Ausbeute an SEE-Oxiden und weiteren wichtigen Element-Oxiden aus regionalplanerisch verbindlichen Gebieten und Flächen (Dogger).	59
Tab. 17:	Mögliche Ausbeute an SEE-Oxiden und weiteren wichtigen Element-Oxiden aus regionalplanerisch verbindlichen Gebieten und Flächen (Kreide).	59
Tab. 18:	Vergleich der stratigraphischen Einheiten (mittlere Oxidgehalte).	60
Tab. A-1:	Tabellarische Aufstellung der mineralogischen Ergebnisse (M%) für Sand (Sp. = Spuren, n.n. = nicht nachgewiesen, <bg =="" bestimmungsgrenze).<="" td=""><td>74</td></bg>	74
Tab. A-2:	Tabellarische Aufstellung der mineralogischen Ergebnisse (M%) für Schluff (Sp. = Spuren, n.n. = nicht nachgewiesen, <bg =="" bestimmungsgrenze).<="" td=""><td>77</td></bg>	77
Tab. A-3:	Tabellarische Aufstellung der geochemischen Ergebnisse für Sand.	80
Tab. A-4:	Tabellarische Aufstellung der geochemischen Ergebnisse für Schluff.	84
Tab. B-1:	Tabellarische Aufstellung der mittleren mineralogischen Zusammensetzung aller untersuchten Schwermineralfraktionen (M%), gegliedert nach Fraktionen, Strati- graphie und Mineral-Gruppen.	87
Tab. C-1:	Ausbeute an SEE- sowie Zr- und Ti- Oxiden für Einzelproben aus Buntsandstein (pro 100.000 t Sandrohstoff).	88
Tab. C-2:	Ausbeute an SEE- sowie Zr- und Ti- Oxiden für Einzelproben aus Sandsteinkeu- per (pro 100.000 t Sandrohstoff).	89
Tab. C-3:	Ausbeute an SEE- sowie Zr- und Ti- Oxiden für Einzelproben aus quartärzeitlich umgelagertem Sandsteinkeuper (pro 100.000 t Sandrohstoff).	90
Tab. C-4:	Ausbeute an SEE- sowie Zr- und Ti- Oxiden für Einzelproben aus Rhätolias (pro 100.000 t Sandrohstoff).	91
Tab. C-5:	Ausbeute an SEE- sowie Zr- und Ti- Oxiden für Einzelproben aus Dogger β (pro 100.000 t Sandrohstoff).	92
Tab. C-6:	Ausbeute an SEE- sowie Zr- und Ti- Oxiden für Einzelproben aus der Kreide (pro 100.000 t Sandrohstoff).	93
Tab. D-1:	Gesamte, erzielbare Oxid-Ausbeute (gerundet) für alle Gewinnungsstellen (jeweils angenommene Förderleistung 100.000 t/a pro Gewinnungsstelle), gegliedert nach stratigraphischer Einheit; SM: abtrennbare Schwermineral-Menge (t).	94

Anhang A

Tab. A-1: Tabellarische Aufstellung der mineralogischen Ergebnisse (M.-%) für Sand (Sp. = Spuren, n.n. = nicht nachgewiesen, < BG = Bestimmungsgrenze).

					Fluor-	Mona-	Xeno-		Turma-		Glim-		Plagio-	Sillima-			
Probe	Strat.	Zirkon	Anatas	Rutil	apatit	zit	tim	Quarz	lin	Granat	mer	Kaolinit	klas	nit	Baryt	Hämatit	Goethit
P-1	sm	16	21	3	44	1	n.n.	5	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	9	n.n.
P-2	sm	14	15	3	37	n.n.	n.n.	14	n.n.	n.n.	12	n.n.	n.n.	n.n.	n.n.	6	n.n.
P-4	sm	16	10	6	50	n.n.	n.n.	5	7	n.n.	5	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-5	sm	15	11	8	29	n.n.	n.n.	10	11	n.n.	5	n.n.	10	n.n.	n.n.	n.n.	n.n.
P-6	sm	12	7	3	69	n.n.	n.n.	5	n.n.	n.n.	3	n.n.	n.n.	n.n.	n.n.	Sp.	n.n.
P-7	sm	13	7	5	55	n.n.	n.n.	7	n.n.	n.n.	5	n.n.	n.n.	n.n.	n.n.	9	n.n.
P-8	sm	39	7	4	44	n.n.	n.n.	Sp.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	6	n.n.
P-10	sm	9	14	9	36	n.n.	n.n.	12	n.n.	n.n.	7	n.n.	Sp.	n.n.	n.n.	12	n.n.
P-11	sm	11	14	4	42	n.n.	n.n.	7	n.n.	n.n.	3	n.n.	6	n.n.	n.n.	12	n.n.
P-12	sm	13	12	7	68	n.n.	n.n.	Sp.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-13	sm	20	13	8	31	2	n.n.	7	n.n.	n.n.	Sp.	n.n.	n.n.	n.n.	n.n.	19	n.n.
P-15	sm	37	21	5	13	3	n.n.	8	n.n.	n.n.	Sp.	n.n.	6	n.n.	n.n.	6	n.n.
P-16	sm	13	26	14	n.n.	n.n.	n.n.	13	n.n.	n.n.	5	n.n.	n.n.	n.n.	n.n.	14	15
P-17	sm	38	24	29	n.n.	3	n.n.	5	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-19	kms	37	13	23	n.n.	10	3	13	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-20	kms	33	23	27	n.n.	5	n.n.	11	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-21	kms	25	23	24	n.n.	10	2	16	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-22	kms	35	32	13	n.n.	n.n.	n.n.	19	n.n.	n.n.	n.n.	n.n.	Sp.	n.n.	n.n.	n.n.	n.n.
P-23	kms	55	12	14	n.n.	4	n.n.	15	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-24	kms	6	17	17	n.n.	n.n.	n.n.	12	23	n.n.	12	n.n.	Sp.	n.n.	n.n.	7	6
P-25	kms	23	26	29	n.n.	2	n.n.	9	11	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-26	kms	30	23	24	n.n.	8	n.n.	15	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-27	sm	23	39	14	n.n.	7	n.n.	9	n.n.	n.n.	7	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-28	sm	18	34	13	n.n.	6	n.n.	12	n.n.	n.n.	9	n.n.	7	n.n.	n.n.	n.n.	n.n.
P-29	sm	22	23	9	n.n.	5	n.n.	23	n.n.	n.n.	12	6	n.n.	n.n.	n.n.	n.n.	n.n.
P-30	kro	24	2	13	n.n.	n.n.	n.n.	25	n.n.	n.n.	4	n.n.	n.n.	n.n.	n.n.	n.n.	32
P-31	kro	18	7	19	n.n.	n.n.	n.n.	20	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	37
P-32	sm	33	34	13	n.n.	5	n.n.	14	n.n.	n.n.	Sp.	Sp.	n.n.	n.n.	n.n.	n.n.	n.n.
P-33	sm	36	35	11	n.n.	5	n.n.	14	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-34	sm	35	35	11	n.n.	5	n.n.	14	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-35	sm	44	28	10	n.n.	4	n.n.	14	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-36	sm	51	24	10	n.n.	Sp.	n.n.	Sp.	n.n.	n.n.	15	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-37	kms	15	11	7	28	3	n.n.	4	n.n.	18	14	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-38	kms	14	18	15	28	4	n.n.	4	n.n.	17	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-40	kms	28	30	24	n.n.	10	Sp.	8	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.

					Fluor-	Mona-	Xeno-		Turma-		Glim-		Plagio-	Sillima-			
Probe	Strat.	Zirkon	Anatas	Rutil	apatit	zit	tim	Quarz	lin	Granat	mer	Kaolinit	klas	nit	Baryt	Hämatit	Goethit
P-41	kms	29	22	28	n.n.	10	Sp.	11	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-42	kms	12	30	23	n.n.	3	n.n.	13	n.n.	19	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-43	kms	28	22	19	n.n.	7	n.n.	13	n.n.	n.n.	n.n.	11	n.n.	n.n.	n.n.	n.n.	n.n.
P-44	ko/l	25	21	26	n.n.	5	2	9	n.n.	n.n.	12	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-45	sm	31	40	12	n.n.	4	n.n.	13	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-46	sm	35	35	16	n.n.	5	n.n.	9	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-47	sm	30	41	15	n.n.	5	n.n.	10	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-48	sm	27	35	20	n.n.	6	n.n.	12	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-49	sm	28	33	15	n.n.	n.n.	n.n.	10	n.n.	n.n.	14	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-50	kms	17	10	8	47	4	n.n.	8	n.n.	n.n.	6	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-51	kms	20	5	n.n.	70	n.n.	n.n.	5	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-52/1	bEs	13	n.n.	10	n.n.	n.n.	n.n.	5	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	72
P-52/2	bEs	n.n.	n.n.	3	n.n.	n.n.	n.n.	12	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	86
P-52/3	bEs	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	12	n.n.	n.n.	21	n.n.	n.n.	n.n.	n.n.	n.n.	67
P-52/4	bEs	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	19	n.n.	n.n.	12	n.n.	n.n.	n.n.	n.n.	n.n.	69
P-53	bEs	23	9	51	n.n.	n.n.	n.n.	17	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-54	bEs	30	n.n.	48	n.n.	n.n.	n.n.	22	n.n.	n.n.	Sp.	n.n.	n.n.	n.n.	n.n.	Sp.	n.n.
P-55	bEs	29	8	34	n.n.	n.n.	n.n.	16	3	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	11
P-56	bEs	17	15	56	n.n.	n.n.	n.n.	12	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-57	bEs	17	11	36	n.n.	n.n.	n.n.	14	21	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-58	bEs	13	n.n.	13	n.n.	n.n.	n.n.	14	n.n.	n.n.	n.n.	Sp.	n.n.	n.n.	n.n.	n.n.	61
P-59	bEs	10	Sp.	13	n.n.	n.n.	n.n.	24	n.n.	n.n.	n.n.	13	n.n.	n.n.	n.n.	n.n.	41
P-60	bEs	14	n.n.	16	n.n.	n.n.	n.n.	43	n.n.	n.n.	n.n.	13	n.n.	n.n.	n.n.	14	n.n.
P-61	kms	26	23	21	n.n.	9	n.n.	10	n.n.	n.n.	n.n.	n.n.	n.n.	11	n.n.	n.n.	n.n.
P-62	kms	12	14	16	n.n.	n.n.	n.n.	8	n.n.	n.n.	6	n.n.	9	n.n.	15	16	4
P-63	qp,SG	20	10	11	n.n.	n.n.	n.n.	9	n.n.	n.n.	n.n.	5	6	n.n.	19	n.n.	20
P-64	qp,SG	9	7	7	n.n.	n.n.	n.n.	10	n.n.	n.n.	7	12	n.n.	n.n.	35	7	6
P-65	qp,SG	11	6	5	n.n.	n.n.	n.n.	12	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	62	4	n.n.
P-66	qp,SG	6	10	n.n.	n.n.	n.n.	n.n.	5	n.n.	n.n.	n.n.	12	n.n.	23	44	n.n.	n.n.
P-67	qp,SG	n.n.	7	n.n.	n.n.	n.n.	n.n.	8	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	81	4	n.n.
P-68	kms	9	8	8	n.n.	n.n.	n.n.	8	n.n.	n.n.	n.n.	13	n.n.	n.n.	53	n.n.	n.n.
P-69	qp,SG	13	6	24	14	n.n.	n.n.	9	13	n.n.	13	n.n.	n.n.	n.n.	n.n.	2	6
P-70	qp,SG	17	21	14	6	3	n.n.	5	n.n.	20	n.n.	n.n.	n.n.	n.n.	n.n.	14	n.n.
P-71	qp,SG	31	13	11	11	3	Sp.	5	6	n.n.	7	n.n.	n.n.	n.n.	n.n.	10	4
P-72	qp, SG	17	15	10	n.n.	2	2	5	n.n.	31	n.n.	n.n.	n.n.	n.n.	n.n.	18	n.n.
P-73	qp,SG	24	22	16	n.n.	n.n.	n.n.	8	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	31
P-74	kms	32	11	19	n.n.	nn	nn	14	nn	nn	nn	nn	nn	n.n.	n.n.	nn	24

					Fluor-	Mona-	Xeno-		Turma-		Glim-		Plagio-	Sillima-			
Probe	Strat.	Zirkon	Anatas	Rutil	apatit	zit	tim	Quarz	lin	Granat	mer	Kaolinit	klas	nit	Baryt	Hämatit	Goethit
P-75	qp,SG	16	12	3	48	2	1	4	n.n.	11	n.n.	n.n.	3	n.n.	n.n.	n.n.	n.n.
P-76	qp,SG	25	10	18	2	3	Sp.	8	n.n.	32	n.n.	n.n.	n.n.	n.n.	n.n.	Sp.	2
P-77	kms	9	7	13	n.n.	3	1	9	n.n.	n.n.	40	n.n.	n.n.	n.n.	n.n.	5	12
P-78	kms	18	11	18	n.n.	Sp.	Sp.	9	n.n.	n.n.	22	n.n.	n.n.	n.n.	n.n.	Sp.	22
P-79	ko/l	18	16	24	n.n.	2	Sp.	4	36	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-80	ko/l	25	10	15	n.n.	2	n.n.	8	9	n.n.	n.n.	8	14	n.n.	n.n.	n.n.	9
P-81	ko/l	18	5	15	n.n.	n.n.	n.n.	5	n.n.	n.n.	18	n.n.	n.n.	n.n.	n.n.	21	18
P-82	kms	12	24	25	19	2	Sp.	6	n.n.	n.n.	Sp.	n.n.	12	n.n.	n.n.	n.n.	n.n.
P-83	kms	14	23	20	n.n.	n.n.	n.n.	9	n.n.	n.n.	28	n.n.	n.n.	n.n.	n.n.	n.n.	6
P-84	kms	24	15	12	n.n.	6	4	9	n.n.	n.n.	30	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-85	kms	34	8	14	n.n.	9	3	4	13	n.n.	n.n.	n.n.	15	n.n.	n.n.	n.n.	n.n.
P-86	kms	23	21	30	n.n.	4	2	5	n.n.	n.n.	n.n.	n.n.	15	n.n.	n.n.	n.n.	n.n.
P-87	kms	25	19	27	n.n.	5	n.n.	6	n.n.	n.n.	Sp.	n.n.	18	n.n.	n.n.	n.n.	n.n.
P-88	kro	52	n.n.	42	n.n.	n.n.	n.n.	6	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-89	kro	19	18	21	n.n.	n.n.	n.n.	8	n.n.	n.n.	16	n.n.	14	n.n.	n.n.	n.n.	4
P-90	kms	2	4	14	n.n.	n.n.	n.n.	10	18	n.n.	29	n.n.	15	n.n.	n.n.	n.n.	8
P-91	kms	17	11	14	n.n.	n.n.	n.n.	8	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	50
P-92	ko/l	7	10	17	n.n.	n.n.	n.n.	4	46	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	16	n.n.
P-93	ko/l	7	5	19	n.n.	n.n.	n.n.	10	n.n.	n.n.	38	n.n.	n.n.	n.n.	n.n.	n.n.	21
P-94	ko/l	8	6	19	n.n.	n.n.	n.n.	n.n.	67	n.n.	< BG	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-95	ko/l	41	20	30	n.n.	9	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-96	ko/l	8	11	12	n.n.	n.n.	n.n.	10	n.n.	n.n.	41	n.n.	n.n.	n.n.	n.n.	n.n.	18
P-97	ko/l	11	n.n.	11	n.n.	n.n.	n.n.	14	n.n.	n.n.	38	n.n.	n.n.	n.n.	n.n.	5	21
P-98	ko/l	21	4	24	n.n.	n.n.	n.n.	6	24	n.n.	21	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-99	ko/l	15	n.n.	12	n.n.	n.n.	n.n.	22	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	51
P-100	kro	21	14	34	n.n.	n.n.	n.n.	7	24	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-101	kro	16	9	26	n.n.	n.n.	n.n.	8	38	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	3
P-102	kro	44	5	42	n.n.	n.n.	n.n.	9	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-103	kro	39	9	36	n.n.	n.n.	n.n.	16	n.n.	n.n.	Sp.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-104	kro	43	2	31	n.n.	n.n.	n.n.	Sp.	24	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-105	kro	67	9	24	n.n.	n.n.	n.n.	Sp.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-106	kro	62	2	16	n.n.	n.n.	n.n.	20	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-107	kro	22	8	21	n.n.	n.n.	n.n.	14	n.n.	n.n.	28	n.n.	n.n.	n.n.	n.n.	n.n.	7
P-108	kro	41	17	28	n.n.	Sp.	n.n.	14	n.n.	n.n.	< BG	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-109	kro	5	24	37	n.n.	n.n.	n.n.	28	n.n.	n.n.	6	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-110	kms	19	14	27	n.n.	n.n.	n.n.	14	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	26	n.n.	n.n.

					Fluor-	Mona-		Turm <u>a-</u>	Amphi-			Kaoli-	Plagi <u>o-</u>		Häma-		"Mn	
Probe	Strat.	Zirkon	Anatas	Rutil	apatit	zit	Quarz	lin	bol	Epidot	Biotit	nit	klas	Baryt	tit	Goethit	Oxide"	Calcit
P-1	sm	17	28	4	46	2	3	n.n.	n.n.	n.n.	Sp.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-2	sm	13	16	3	47	n.n.	5	n.n.	n.n.	n.n.	7	n.n.	n.n.	n.n.	9	n.n.	n.n.	n.n.
P-3	sm	13	19	3	32	n.n.	4	n.n.	n.n.	n.n.	14	n.n.	n.n.	n.n.	15	n.n.	n.n.	n.n.
P-4	sm	17	27	5	42	Sp.	Sp.	n.n.	n.n.	n.n.	9	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-5	sm	20	27	5	32	2	7	n.n.	n.n.	n.n.	5	n.n.	n.n.	n.n.	2	n.n.	n.n.	n.n.
P-6	sm	18	16	3	52	1	5	n.n.	n.n.	n.n.	5	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-7	sm	17	17	3	48	2	4	n.n.	n.n.	n.n.	7	n.n.	n.n.	n.n.	2	n.n.	n.n.	n.n.
P-8	sm	23	21	3	36	2	5	n.n.	n.n.	n.n.	8	n.n.	n.n.	n.n.	2	n.n.	n.n.	n.n.
P-9	sm	8	9	1	34	Sp.	n.n	n.n.	23	n.n.	20	n.n.	n.n.	n.n.	2	n.n.	n.n.	3
P-10	sm	12	23	7	35	2	4	n.n.	n.n.	n.n.	5	n.n.	n.n.	n.n.	12	n.n.	n.n.	n.n.
P-13	sm	18	37	4	25	2	4	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	10	n.n.	n.n.	n.n.
P-14	sm	15	33	4	14	2	5	n.n.	15	n.n.	4	n.n.	n.n.	n.n.	8	n.n.	n.n.	n.n.
P-15	sm	27	31	6	15	3	4	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	14	n.n.	n.n.	n.n.
P-16	sm	25	29	16	n.n.	Sp.	7	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	2	21	n.n.	n.n.
P-18	sm	28	22	10	n.n.	5	7	n.n.	Sp.	n.n.	16	n.n.	n.n.	n.n.	12	n.n.	n.n.	n.n.
P-22	kms	65	18	10	n.n.	7	Sp.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-23	kms	67	14	12	n.n.	7	Sp.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-30	kro	20	14	19	n.n.	n.n.	Sp.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	7	40	n.n.	n.n.
P-31	kro	20	9	21	n.n.	n.n.	12	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	38	n.n.	n.n.
P-41	kms	41	16	15	n.n.	5	11	9	n.n.	n.n.	3	n.n.	Sp.	n.n.	n.n.	n.n.	n.n.	n.n.
P-44	ko/l	23	36	17	n.n.	6	10	n.n.	n.n.	n.n.	n.n.	8	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-46	sm	11	67	6	n.n.	3	5	n.n.	n.n.	n.n.	n.n.	8	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-47	sm	13	57	7	n.n.	4	6	n.n.	n.n.	n.n.	n.n.	9	4	n.n.	n.n.	n.n.	n.n.	n.n.
P-48	sm	16	41	18	n.n.	5	5	n.n.	n.n.	n.n.	n.n.	15	Sp.	n.n.	n.n.	n.n.	n.n.	n.n.
P-50	kms	21	17	8	29	4	4	n.n.	n.n.	n.n.	8	n.n.	n.n.	n.n.	9	n.n.	n.n.	n.n.
P-51	kms	8	7	5	21	Sp.	4	n.n.	n.n.	n.n.	2	n.n.	10	n.n.	2	n.n.	41	n.n.
P-52	bEs	n.n.	n.n.	n.n.	n.n.	n.n.	Sp.	n.n.	n.n.	n.n.	n.n.	Sp.	n.n.	n.n.	n.n.	100	n.n.	n.n.
P-53	bEs	32	11	57	n.n.	n.n.	Sp.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-54	bEs	18	11	44	n.n.	n.n.	5	n.n.	n.n.	n.n.	n.n.	6	n.n.	n.n.	n.n.	6	n.n.	n.n.
P-55	bEs	24	15	20	n.n.	n.n.	11	n.n.	n.n.	n.n.	Sp.	16	n.n.	n.n.	n.n.	14	n.n.	n.n.
P-56	bEs	36	13	44	n.n.	n.n.	Sp.	n.n.	n.n.	n.n.	n.n.	7	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-57	bEs	20	18	36	n.n.	n.n.	7	14	n.n.	n.n.	n.n.	5	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-58	bEs	5	n.n.	1	n.n.	n.n.	n.n	n.n.	n.n.	n.n.	n.n.	14	n.n.	n.n.	n.n.	80	n.n.	n.n.
P-59	bEs	6	2	7	n.n.	n.n.	3	n.n.	n.n.	n.n.	n.n.	17	6	n.n.	n.n.	59	n.n.	n.n.
P-60	bEs	15	5	11	n.n.	n.n.	7	n.n.	n.n.	n.n.	n.n.	22	n.n.	n.n.	24	16	n.n.	n.n.

Tab. A-2: Tabellarische Aufstellung der mineralogischen Ergebnisse (M.-%) für Schluff (Sp. = Spuren, n.n. = nicht nachgewiesen, < BG = Bestimmungsgrenze).

					Fluor-	Mo <u>na-</u>		Tur <u>ma-</u>	Amphi-			Ka <u>oli-</u>	Plagio-		Hä <u>ma-</u>		"M <u>n-</u>	
Probe	Strat.	Zirkon	Anatas	Rutil	apatit	zit	Quarz	lin	bol	Epidot	Biotit	nit	klas	Barvt	tit	Goethit	Oxide"	Calcit
P-62	kms	21	18	14	n.n.	4	9	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	34	n.n.	n.n.	n.n.
P-63	qp,SG	27	8	17	n.n.	5	6	n.n.	9	n.n.	n.n.	8	n.n.	13	n.n.	7	n.n.	n.n.
P-64	qp,SG	14	10	6	n.n.	2	8	n.n.	n.n.	n.n.	5	10	3	15	13	14	n.n.	n.n.
P-65	qp,SG	11	10	5	n.n.	3	8	n.n.	n.n.	n.n.	4	9	12	31	4	3	n.n.	n.n.
P-66	qp,SG	9	14	5	10	3	8	n.n.	n.n.	n.n.	4	10	n.n.	30	4	3	n.n.	n.n.
P-67	qp,SG	5	8	4	n.n.	Sp.	4	n.n.	n.n.	n.n.	5	12	n.n.	48	10	4	n.n.	n.n.
P-68	kms	11	15	6	n.n.	n.n.	8	n.n.	n.n.	n.n.	n.n.	7	7	33	n.n.	8	5	n.n.
P-69	qp,SG	27	12	12	17	7	7	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	6	12	n.n.	n.n.
P-70	qp,SG	40	14	11	14	8	10	Sp.	Sp.	n.n.	Sp.	n.n.	n.n.	n.n.	3	n.n.	n.n.	n.n.
P-71	qp,SG	21	9	6	16	6	9	n.n.	n.n.	n.n.	7	9	n.n.	n.n.	9	8	n.n.	n.n.
P-72	qp,SG	23	11	6	6	5	5	13	13	n.n.	n.n.	n.n.	15	n.n.	3	n.n.	n.n.	n.n.
P-73	qp,SG	22	15	12	1	4	7	9	11	n.n.	n.n.	n.n.	13	n.n.	n.n.	6	n.n.	n.n.
P-74	kms	25	14	13	n.n.	4	6	10	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	20	8	n.n.	n.n.
P-75	qp,SG	18	20	5	26	6	n.n	n.n.	n.n.	n.n.	n.n.	10	n.n.	n.n.	n.n.	15	n.n.	n.n.
P-76	qp,SG	35	15	15	6	8	7	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	5	9	n.n.	n.n.
P-77	kms	17	13	7	n.n.	7	6	n.n.	n.n.	n.n.	12	18	n.n.	n.n.	11	9	n.n.	n.n.
P-78	kms	20	16	9	n.n.	8	5	n.n.	n.n.	n.n.	11	14	n.n.	n.n.	10	7	n.n.	n.n.
P-79	ko/l	30	16	15	n.n.	15	Sp.	24	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-80	ko/l	25	14	13	n.n.	10	8	n.n.	n.n.	n.n.	n.n.	13	n.n.	n.n.	n.n.	17	n.n.	n.n.
P-88	kro	50	19	24	n.n.	7	Sp.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-89	kro	33	32	20	n.n.	7	8	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-90	kms	21	20	18	n.n.	Sp.	7	n.n.	n.n.	34	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-91	kms	33	16	18	n.n.	5	10	n.n.	n.n.	18	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.
P-92	ko/l	17	14	13	n.n.	5	5	22	n.n.	n.n.	n.n.	12	n.n.	n.n.	12	n.n.	n.n.	n.n.
P-93	ko/l	17	16	17	n.n.	7	11	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	32	n.n.	n.n.
P-94	ko/l	22	20	24	n.n.	Sp.	14	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	17	3	n.n.
P-95	ko/l	40	14	18	n.n.	12	9	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	7	n.n.	n.n.
P-96	ko/l	21	12	14	n.n.	8	7	n.n.	n.n.	n.n.	n.n.	14	Sp.	n.n.	n.n.	24	n.n.	n.n.
P-97	ko/l	13	8	8	n.n.	Sp.	5	n.n.	n.n.	n.n.	n.n.	20	n.n.	n.n.	n.n.	46	n.n.	n.n.
P-98	ko/l	22	16	16	n.n.	8	7	n.n.	n.n.	n.n.	n.n.	13	n.n.	n.n.	3	15	n.n.	n.n.
P-99	ko/l	12	11	12	n.n.	Sp.	5	n.n.	n.n.	n.n.	n.n.	17	n.n.	n.n.	n.n.	44	n.n.	n.n.
P-101	kro	21	6	11	n.n.	Sp.	25	n.n.	n.n.	n.n.	n.n.	Sp.	n.n.	n.n.	n.n.	37	n.n.	n.n.
P-102	kro	24	5	17	n.n.	n.n.	7	n.n.	n.n.	n.n.	n.n.	n.n.	14	n.n.	n.n.	33	n.n.	n.n.
P-103	kro	19	12	13	n.n.	n.n.	14	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	42	n.n.	n.n.
P-104	kro	20	11	18	n.n.	n.n.	10	25	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	16	n.n.	n.n.
P-105	kro	38	12	19	n.n.	7	10	n.n.	n.n.	n.n.	n.n.	n.n.	14	n.n.	n.n.	n.n.	n.n.	n.n.
P-106	kro	38	19	23	n.n.	9	11	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.

					Fluor-	Mona-		Turma-	Amphi-			Kaoli-	Plagio-		Häma-		"Mn-	
Probe	Strat.	Zirkon	Anatas	Rutil	apatit	zit	Quarz	lin	bol	Epidot	Biotit	nit	klas	Baryt	tit	Goethit	Oxide"	Calcit
P-107	kro	38	12	14	n.n.	9	11	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	16	n.n.	n.n.
P-108	kro	26	24	14	n.n.	8	12	n.n.	n.n.	n.n.	n.n.	10	n.n.	n.n.	n.n.	6	n.n.	n.n.
P-109	kro	11	39	24	n.n.	2	17	n.n.	n.n.	n.n.	7	Sp.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.

Tab. A-3: Tabellarische Aufstellung der geochemischen Ergebnisse für Sand.

Element	Sc	Y	La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Zr	TiO ₂
Einheit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
Probe																		
P-1	36	1.838	2.370	4.830	541	2.390	481	17,7	473	60,3	330	68,7	207	31,8	217	36,5	26.810	18,86
P-2	33	1.178	756	1.770	210	957	226	9,6	239	38,3	212	44,4	137	21,2	145	24,6	24.110	14,87
P-4	43	1.496	682	1.670	204	970	247	10,3	262	42,2	275	56,3	183	29,6	215	38,8	17.330	9,81
P-5	60	1.197	1.110	2.510	279	1.220	251	10,3	251	35,9	204	44,3	150	25,4	189	34,8	52.450	13,43
P-6	29	1.539	517	1.420	186	937	259	11	277	45,5	268	57,3	182	28	195	33,1	2.332	7,76
P-7	35	1.357	559	1.450	181	866	227	9,84	241	39	235	51,5	163	26,1	187	32,4	8.943	9,03
P-8	56	1.503	838	1.830	233	936	227	11,1	218	37,1	248	53	177	31,9	238	42	159.700	10,25
P-10	26	1.009	993	2.270	257	1.130	237	9,49	239	34,1	184	38,3	118	17,7	122	20,3	26.000	14,46
P-11	38	1.463	1.890	3.940	438	1.910	390	12,1	379	51,5	271	56	175	27,8	193	33,4	32.210	13,22
P-12	26	2.023	1.550	3.320	417	1.650	397	15,1	378	63,7	391	72,8	210	33,2	217	33,8	73.420	20
P-13	38	2.302	3.430	6.850	733	3.080	584	20,4	588	72,3	400	83,6	261	39,8	272	45,5	106.400	16,5
P-15	52	2.131	3.550	7.040	739	3.110	578	19,9	565	67,6	365	76,2	241	37,9	266	46,4	136.900	18,09
P-16	70	1.320	1.680	3.330	352	1.450	275	19,8	290	41,7	239	49,4	155	23,6	160	26,2	38.150	21,45
P-17	97	4.292	7.530	15.100	1.700	6.430	1.170	52,9	1.160	138	731	162	513	79,4	541	89	144.000	40,78
P-19	156	4.288	6.770	13.600	1.510	5.720	1.110	40,8	906	133	766	150	456	71,8	464	73,7	101.400	34,72
P-20	157	3.278	5.210	10.200	1.200	4.590	840	30,9	839	104	595	118	374	56,5	374	61,4	85.290	43,41
P-21	150	4.226	6.750	13.500	1.500	5.620	1.100	41,3	907	126	756	147	450	68,9	439	67,1	75.030	40,84
P-22	103	3.160	4.330	8.590	1.010	3.820	697	26	715	96,7	564	117	375	58,2	396	67	144.700	35,22
P-23	116	3.283	4.240	8.440	987	3.730	683	25,5	706	92,4	563	117	382	59,8	412	69,4	157.300	33,74
P-24	107	2.176	3.830	7.620	811	3.430	620	23	608	72,8	390	79,2	242	35,5	233	37,9	33.260	28,51
P-25	100	2.297	3.960	7.820	823	3.440	632	23	611	75,7	410	82,1	254	37	243	38,8	49.940	44,95
P-26	111	3.102	5.170	10.300	1.200	4.530	851	30,6	842	109	598	120	377	55,3	359	57,6	52.000	37,81
P-27	135	4.725	8.650	17.100	1.970	7.320	1.330	36,3	1.300	147	794	171	533	79,2	514	84	108.900	39,93
P-28	127	4.908	9.140	18.100	2.080	7.810	1.400	37,5	1.370	166	899	178	554	80,7	533	85,3	104.100	39,83
P-29	123	3.791	7.160	14.200	1.630	6.130	1.100	30,8	1.080	130	721	145	453	67,8	446	72,2	92.000	36,04
P-30	98	749	866	1.880	202	830	151	9,23	158	21,8	137	29,6	100	16,4	121	22	65.160	28,13
P-31	90	787	728	1.590	168	692	129	8,41	141	20,5	124	29	100	16,8	122	21,9	67.750	28,53
P-32	106	3.329	5.800	11.500	1.310	4.850	834	24	828	105	550	113	362	55,7	381	63,8	149.100	39,6
P-33	122	3.477	6.020	11.800	1.350	5.020	868	24,8	853	107	572	117	375	57,4	393	66,2	146.000	33,77
P-34	127	2.517	5.520	10.900	1.240	4.570	758	20,4	728	78,4	424	88,9	285	45,5	330	57	176.200	35,71
P-35	128	2.459	5.060	10.100	1.160	4.230	701	16,2	673	75	387	84,3	281	45,7	330	57,7	183.700	32,84
P-36	135	2.824	5.680	11.200	1.230	4.480	793	18,7	597	81,1	468	96,2	309	53,6	371	61,9	209.500	25,8
P-37	76	4.141	7.830	15.500	1.780	6.650	1.310	50,8	1.050	142	772	142	416	61,7	391	59,8	10.530	32,38

Element	Sc	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dv	Но	Er	Tm	Yb	Lu	Zr	TiO ₂
Finheit	nnm	nnm	nnm	nnm	nnm	nnm	nnm	nnm	nnm	nnm	nnm	nnm	nnm	nnm	nnm	nnm	nnm	%
	PPIII	22.0	PPIII	PPIII	PPIII	PPIII	PPIII	PPIII	PPIII	PPIII	PPIII	PPIII	PPIII	PPIII	PPIII	66.00	66.00	/0
Prohe																		
P-38	72	5,500	11,100	22,000	2,580	9,750	1.830	62.7	1.770	202	1.030	198	567	81.2	520	83.1	81,600	25.73
P-40	75	5.278	10.100	19.900	2.210	8.090	1.600	50,4	1.270	177	980	185	551	83,9	524	80,1	81.420	36,72
P-41	77	3.600	6.670	13.100	1.480	5.490	1.070	38,7	875	121	678	128	382	59,2	385	59,4	69.490	37,56
P-42	73	2.114	3.180	6.290	675	2.810	528	19,9	515	59,9	343	73,3	226	33,4	218	35,3	38.680	44,31
P-43	83	3.879	7.430	14.600	1.720	6.450	1.200	43,4	1.170	137	706	136	414	60,6	411	68,4	101.700	35,15
P-44	178	5.849	7.280	14.600	1.650	6.200	1.240	51	1.080	170	1.030	205	626	97,9	634	97,9	92.790	38,38
P-45	129	2.185	4.590	9.130	1.010	3.830	645	15,9	614	67,2	378	77,7	257	40,6	281	48,2	128.800	41,05
P-46	126	2.313	5.010	10.000	1.090	3.920	717	17,5	521	67,6	376	73	240	38,9	281	45,7	140.700	37,38
P-47	135	2.817	5.240	10.400	1.200	4.420	775	21	760	87,9	482	97,5	309	47,3	323	53,5	112.600	45,13
P-48	116	1.644	3.330	6.640	704	2.850	493	13,6	463	53,6	294	57,7	185	28,5	194	32,8	81.360	47,03
P-49	147	3.000	4.340	8.620	960	3.570	670	24,2	550	85,6	506	103	315	50,7	334	53	90.210	42,93
P-50	62	3.647	5.010	9.970	1.170	4.490	846	23	844	114	635	132	413	61,8	404	64,2	29.820	28,79
P-51	56	3.332	5.190	10.400	1.180	4.460	864	25,7	734	109	633	125	371	57,2	360	54,8	12.940	19,58
P-52/1	134	314	187	425	47,6	220	56,6	9,21	55,7	7,9	52,9	11,9	44,6	8,18	65,3	12,5	40.860	16,4
P-52/2	153	67	58	141	15,1	71,6	20	3,73	18,6	2,6	14,6	2,9	9,2	1,53	11	1,87	3.297	8,17
P-52/3	180	50	46	112	12,1	56,4	14,3	2,68	13,2	1,8	10,6	2,1	6,5	1,05	8	1,36	2.745	3,27
P-52/4	167	18	18	51	5,29	26	7,7	1,6	6,9	0,9	4,9	0,8	2,5	0,41	2,9	0,48	340	0,55
P-53	159	598	313	643	74,2	315	68,8	9,12	73,9	13,4	90,1	21,9	81,3	15	119	23	89.630	47,73
P-54	123	509	183	363	39,6	148	37,6	6,53	40,8	8,9	70,1	16,9	61,6	11,4	89,9	16,3	62.120	40,69
P-55	119	561	45	112	12,8	59,4	21,2	5	33,6	9,2	76,8	19,9	76,1	14,2	113	21,8	82.930	43,18
P-56	162	570	317	626	75,5	296	68,9	9,69	61,5	11,8	81,5	18,7	64,6	11,8	90,6	16	47.770	55,28
P-57	212	578	323	1.880	95,3	451	117	24,2	122	18,1	110	22,1	77,4	13,6	104	19,5	64.250	47,65
P-58	138	263	62	149	14,3	62,8	17,2	3,65	22,9	4,9	39,1	9,7	37,6	7,1	55,7	10,5	39.940	18,35
P-59	123	332	72	192	17,2	74	20,1	4,15	26	6	49,1	12,6	49,6	9,25	75,2	14,3	55.400	23,82
P-60	117	396	201	384	37,5	135	28,5	5,16	28,8	6,2	50,5	13,3	50,3	9,99	80,4	15,1	61.000	25,67
P-61	107	4.073	7.430	14.900	1.720	6.230	1.200	41,8	1.120	141	754	147	441	64	423	67,3	63.050	38,37
P-62	87	2.990	4.610	9.140	1.030	3.810	784	27,6	603	86	483	93,3	284	43,1	293	44,9	52.010	25,9
P-63	76	2.490	4.950	9.770	1.140	4.130	790	27,7	728	94,4	475	92,4	279	41,2	279	46	64.930	18,99
P-64	48	1.039	1.760	3.500	367	1.470	279	10,3	260	36,7	189	37,7	116	17,3	118	18,9	18.150	12,36
P-65	28	832	1.570	3.200	353	1.300	245	9,61	202	27,2	149	31,1	85,4	13,4	84,8	12,6	13.440	8,79
P-66	39	1.891	3.060	6.130	693	2.540	479	18,4	412	58,4	327	62,7	180	26,9	172	27,7	5.622	7,42
P-67	15	496	1.020	2.030	222	820	150	3,53	123	17,8	92,9	18,4	52,2	8,05	50,6	8,32	7.902	4,18
P-68	50	1.456	2.680	5.280	551	2.180	419	15,9	386	49,6	280	53,4	163	24,1	165	26,5	27.980	13,56

Element	Sc	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Zr	TiO ₂
Einheit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
Probe																		
P-69	66	2.400	3.990	7.840	892	3.350	682	24,4	517	72,3	408	78,1	237	36,1	238	37,3	44.440	18,79
P-70	88	3.296	6.250	12.200	1.370	5.140	1.010	34,2	758	104	571	108	319	48,6	321	50	54.650	21,09
P-71	81	4.256	9.210	17.800	1.990	7.400	1.470	48,6	1.070	146	756	138	404	59,8	392	59,8	23.100	17,35
P-72	93	3.782	7.150	14.200	1.600	5.980	1.170	39,4	877	118	635	119	352	52,8	350	55,1	63.440	21,92
P-73	81	2.230	3.850	7.630	864	3.250	650	22,7	470	65,6	374	70,4	219	34,2	238	37,7	68.000	24
P-74	73	2.266	4.240	8.470	944	3.440	692	23,8	502	68,5	377	69,3	214	32,6	221	35,8	63.660	22,65
P-75	66	4.095	6.630	13.200	1.490	5.520	1.150	43,5	907	128	718	136	405	61,6	401	60,7	48.830	14,2
P-76	80	3.377	6.050	12.100	1.380	4.980	1.010	31,4	754	104	566	109	334	51,2	340	53,2	78.950	23,66
P-77	102	2.372	4.340	8.610	976	3.720	731	26,5	532	74,4	411	77,8	234	35,6	233	35,7	37.070	20,04
P-78	99	4.584	7.240	14.500	1.640	5.990	1.240	42,7	930	127	716	138	408	63,2	412	62,7	59.190	27,08
P-79	181	5.186	4.660	9.450	1.060	3.960	825	39,2	678	112	712	150	469	75	502	77,6	88.090	38,44
P-80	158	3.981	4.270	8.620	994	3.590	747	29,1	594	93,7	587	122	385	61,2	401	62,9	76.990	26,94
P-81	181	2.128	2.140	4.400	490	1.870	380	20	311	50,1	317	67,8	217	34,7	233	37,4	55.180	23,51
P-82	70	3.837	6.650	13.100	1.510	5.530	1.100	40,1	799	113	638	122	370	56,3	377	57,4	33.450	33,18
P-83	78	3.133	5.990	11.700	1.330	4.960	943	33,3	768	108	592	109	322	49,8	311	47,5	41.870	36,68
P-84	92	4.543	8.010	15.700	1.770	6.540	1.300	44,5	993	137	783	147	446	68,2	437	66,5	64.510	36,41
P-85	76	4.859	9.430	18.400	2.040	7.460	1.530	48,1	1.120	157	855	160	481	71,7	465	71,7	72.230	31,28
P-86	71	3.626	7.060	14.200	1.590	5.820	1.160	36,4	843	116	643	118	353	53,8	348	53,2	48.540	40,75
P-87	75	3.955	7.200	14.600	1.640	5.820	1.200	37,2	880	120	651	124	371	54,9	354	54,9	53.360	41,22
P-88	117	1.505	1.420	2.880	319	1.180	227	7,17	184	29,2	195	45,2	157	28,1	202	35,2	154.600	39,93
P-89	104	1.478	1.940	3.830	440	1.630	308	12	238	35	222	46,8	155	25,6	181	29,9	84.510	40,82
P-90	88	543	862	1.760	194	751	145	9,93	120	17,5	99,7	19,8	62,1	9,74	64	9,86	10.980	20,85
P-91	80	2.493	4.910	9.830	1.100	4.040	804	26,7	607	80,7	433	82,5	247	38,4	259	41,7	77.830	23,21
P-92	170	2.034	2.170	4.340	489	1.860	380	16,5	309	48,1	302	64,4	204	32,2	218	33,6	34.770	34,05
P-93	118	1.447	1.660	3.270	384	1.430	278	12,2	243	37,7	238	48,3	150	24,6	159	24,6	22.100	22,69
P-94	176	2.139	2.450	5.010	563	2.150	447	21,3	363	55,6	350	71,1	221	35	229	35,4	35.400	25,79
P-95	326	6.450	9.690	19.600	2.220	8.110	1.620	58,3	1.240	176	1030	202	613	94	620	96,1	114.000	34,82
P-96	142	2.494	2.800	5.890	647	2.450	495	21,7	431	71	422	84,7	258	41,9	266	40,9	43.500	24,83
P-97	138	2.042	2.440	4.860	543	2.050	418	16,7	330	51	321	66,6	210	33,1	221	34,6	36.860	20,49
P-98	184	3.865	4.260	8.870	975	3.640	743	27,2	589	91,7	582	122	384	61,2	410	64,5	75.230	31,53
P-99	155	2.072	2.430	6.320	552	2.120	428	18,5	341	50,1	315	63,8	199	31,9	212	33,5	39.810	19,02
P-100	88	1.469	1.070	2.160	245	916	189	10,9	168	29,4	206	46,3	151	25,5	178	28,7	67.510	42,98
P-101	82	1.066	871	1.770	198	737	149	8,87	130	22,3	154	34,1	112	19,2	134	21,9	47.220	39,37
P-102	69	1.055	1.050	2.100	239	872	168	9,16	137	22,4	152	34,2	122	21,8	164	28,7	102.300	35,73

Element	Sc	Υ	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Zr	TiO ₂
Einheit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
Probe																		
P-103	94	1.063	1.150	2.390	265	974	187	9,04	150	23,6	153	35,1	118	20,5	148	24,4	81.600	37,94
P-104	88	1.167	1.350	2.710	306	1.120	213	10	166	25,3	167	37,4	130	23	171	29,3	113.400	41,51
P-105	98	2.027	4.020	8.190	884	3.240	590	16,8	437	57,9	331	66,2	209	34,6	226	37,9	114.300	37,99
P-106	96	1.999	3.650	7.380	824	2.960	536	15,7	406	53,9	310	64,3	201	32,3	219	35,8	108.900	41,43
P-107	86	1.515	2.330	4.810	516	1.950	371	13,4	285	39,8	241	49,2	161	26,5	186	31,3	83.180	38,96
P-108	133	2.172	3.930	7.820	871	3.160	589	19,7	453	61,1	338	67,1	213	33,9	235	37,9	109.300	34,48
P-109	79	881	1.140	2.330	267	1.000	203	13,9	159	24,1	147	29,3	90,8	14,2	95,4	14,9	22.250	49,98
P-110	70	2.804	5.400	10.800	1.210	4.550	893	31,3	731	104	560	103	304	46,7	299	46	48.660	33,34

Tab. A-4: Tabellarische Aufstellung der geochemischen Ergebnisse für Schluff.

Element	Sc	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Zr	TiO ₂
Einheit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
Probe																		
P-1	35	2.164	3.760	7.720	888	3.470	718	34,6	554	77,7	434	79	228	35	231	36,6	68.500	29,83
P-2	43	2.444	2.950	6.150	703	2.760	593	29,9	497	75,4	444	87,6	260	40,6	276	42	45.950	13,87
P-3	37	1.769	1.980	4.070	503	1.970	412	20,8	358	55,5	309	63,1	183	30,3	193	28,9	50.230	18,53
P-4	52	1.921	1.890	3.930	474	1.890	402	20	360	57,4	338	72,1	219	38	265	40,8	97.970	26,38
P-5	74	2.406	2.930	5.710	728	2.740	562	26,7	463	66,2	406	82,4	263	42,7	301	49,6	32.210	21
P-6	33	2.224	1.650	3.540	437	1.770	403	23,9	375	61,7	368	77,3	230	39,1	262	40,1	94.590	15,48
P-7	37	2.222	2.190	4.600	535	2.120	478	24,6	403	62,8	383	76,1	235	37,7	266	41,7	97.240	17,13
P-8	62	2.171	2.080	4.460	509	2.020	444	22,1	374	58,9	370	76,9	245	41,7	299	49,7	148.300	20,77
P-9	30	1.574	1.110	2.420	303	1.260	299	17	278	47,5	278	57,2	164	26,4	170	24,6	45.840	10,64
P-10	41	1.794	2.200	4.520	521	2.000	407	21	350	54,2	305	61,8	181	29,8	193	28,8	50.220	28,19
P-13	41	1.888	3.000	6.160	709	2.800	541	23,9	435	61,8	330	65,6	187	31,2	205	32,1	70.710	26,79
P-14	44	1.506	2.390	4.860	554	2.160	418	20,9	344	48,5	270	53,4	156	26	172	25,5	54.480	29,27
P-15	41	1.715	2.960	5.950	677	2.620	500	22,5	400	54,4	291	57,7	165	26,6	189	30,1	93.300	39,34
P-16	95	3.361	4.660	9.240	1.040	4.030	779	50,5	651	94,5	526	108	314	51	338	50	65.920	23,1
P-18	60	3.099	4.730	9.590	1.120	4.040	779	37	642	89,8	507	104	304	50	328	49,2	100.600	28,29
P-22	186	5.423	7.260	14.700	1.720	6.380	1.190	55,8	984	142	815	167	490	82,6	561	85,2	244.300	24,72
P-23	181	4.241	4.960	10.000	1.160	4.380	825	40	677	104	628	131	408	72	498	79,2	254.300	22,48
P-30	110	1.047	1.560	3.150	360	1.350	252	14,5	205	30,2	174	36,3	113	19,7	136	21,1	50.420	24,22
P-31	110	895	1.360	2.780	305	1.140	218	12,5	172	24,6	150	30,3	96,5	15,6	110	17,8	42.570	25,13
P-41	122	4.126	7.940	15.900	1.750	6.630	1.290	56,6	970	127	696	132	395	60,9	425	68,7	165.100	26,31
P-44	289	4.904	8.410	16.700	1.840	6.900	1.360	64	1.070	153	884	172	522	81,4	542	83,8	120.800	37,96
P-46	112	1.520	4.200	8.590	953	3.550	621	21,5	444	54	284	55,8	163	27,4	187	28	64.820	61,5
P-47	150	2.547	5.420	10.900	1.240	4.570	826	30,8	627	79,9	431	86,7	257	41,7	279	41,3	63.460	47,7
P-48	132	1.622	4.200	8.700	988	3.820	661	36,3	471	56,8	297	57	171	28	187	27,5	52.860	51,49
P-50	73	3.647	6.810	13.700	1.480	5.610	1.050	31,9	813	108	634	125	380	58,8	382	58,2	31.030	31,93
P-51	55	1.651	3.260	6.880	754	2.930	540	22,1	425	56,6	302	60,2	173	27,5	175	25,7	35.520	11,61
P-52	152	45	90,4	276	30	165	51,9	9,88	37,7	4,4	16,8	2,3	5,9	0,92	6,1	0,97	1.239	1,427
P-53	195	991	633	1.300	152	581	120	16,1	116	20,8	137	32,4	112	19,9	156	26,4	90.110	43,33
P-54	203	1.067	113	270	30,7	126	43,7	11,4	67,6	18,3	138	34,7	117	21,8	164	26,3	69.950	42,04
P-55	165	1.018	108	246	27,9	119	38,6	9,92	63,8	16,5	132	34,8	121	23,5	178	29,1	96.300	30,45
P-56	236	1.416	107	264	30,9	142	54,2	14,6	87,8	23,7	179	46,7	161	30,3	225	37,5	124.600	51,69
P-57	271	1.442	564	2.560	160	659	181	39,6	196	37,3	238	53,7	175	31,2	231	36,1	67.040	49,18
P-58	167	226	73,1	194	18,1	74,4	20,6	4,55	24,1	5	37,3	8,7	31,2	5,8	42,8	7,39	17.010	6

Element	Sc	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Zr	TiO ₂
Einheit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
Probe																		
P-59	157	309	90,8	272	22,2	90,4	23	4,88	26,1	5,7	45,1	10,8	38,9	7,36	54,9	9,45	23.080	11,32
P-60	155	521	72,6	223	18,8	77,1	21,7	4,88	30,3	7,6	63,9	15,8	58,4	11,1	85,9	14,7	47.400	16,17
P-62	111	2.392	4.290	8.520	977	3.720	716	37,3	582	81	435	85,8	251	41,5	275	42,5	75.140	21,62
P-63	126	3.326	6.200	12.400	1.430	5.300	976	43,3	774	103	535	103	305	49,1	330	50,4	127.000	15,89
P-64	101	1.591	2.780	5.500	604	2.310	454	25,3	360	51	292	56,4	170	27	182	29,2	51.280	13,69
P-65	85	1.701	3.150	6.130	702	2.640	502	22	385	54,2	287	56,6	164	27	179	27,4	43.780	11,02
P-66	75	1.801	3.240	6.410	726	2.810	530	24,7	411	55,1	299	58,3	166	26,9	178	26,7	54.460	12,59
P-67	50	934	1.580	3.080	352	1.330	254	13,1	207	29,3	158	29,9	85,7	13,9	91,8	13,7	20.340	6,877
P-68	117	2.156	4.230	8.280	895	3.410	658	33,9	523	75,4	414	76,5	233	35,7	240	38,4	59.500	14,27
P-69	98	3.063	6.100	12.100	1.360	5.190	999	41,9	795	108	535	101	296	47	309	47,1	81.640	17,13
P-70	111	3.635	7.050	14.000	1.620	6.080	1.160	51,4	914	125	617	118	340	54,4	350	55,3	108.800	17,97
P-71	92	2.738	5.650	10.700	1.230	4.860	941	43,7	745	94,9	496	91,4	273	41,8	276	44,2	79.590	13
P-72	107	3.271	7.150	14.200	1.620	6.160	1.170	48,8	844	113	596	106	309	47,7	326	51,9	98.850	17,74
P-73	127	2.625	5.080	10.100	1.140	4.380	838	41,4	616	86,1	468	88,2	266	43,2	298	47,8	97.210	25,01
P-74	118	2.603	4.870	9.770	1.130	4.310	803	39,6	591	84,2	460	86,7	268	42,5	301	47,4	96.510	21,83
P-75	102	2.907	5.110	10.000	1.180	4.440	868	47,9	719	100	551	103	310	46,7	308	47,8	45.490	11,58
P-76	117	3.476	7.490	14.800	1.680	6.330	1.220	44,3	869	122	636	117	345	55,4	372	58,4	121.500	21,29
P-77	121	2.356	4.570	9.040	1.040	3.990	767	41,9	590	82,6	451	81,8	243	37,9	259	39,2	51.070	14,99
P-78	102	2.958	6.250	12.200	1.380	5.280	1.030	51,1	763	106	564	102	301	46,8	317	49,4	60.040	18,09
P-79	260	7.536	11.800	23.300	2.660	10.000	1.950	96,1	1.470	209	1.250	239	734	115	761	114	140.200	24,36
P-80	232	5.044	8.830	17.600	1.980	7.350	1.440	54,9	1.100	147	854	162	481	76,3	509	78,7	93.690	16,91
P-88	215	2.801	4.040	8.100	888	3.370	622	26,7	512	78,2	469	99,5	322	54,6	396	66,4	172.600	39,35
P-89	164	3.008	5.680	11.400	1.290	4.760	869	40,2	677	96,2	528	104	320	50	344	52,8	91.550	40,59
P-90	137	2.024	2.900	5.850	656	2.550	493	37,1	387	60	362	71,9	225	37,4	264	41,6	63.190	29,72
P-91	127	2.723	5.190	10.500	1.130	4.410	844	40,6	672	93,7	493	93,5	290	46,8	323	52,3	111.700	26,19
P-92	288	4.199	6.200	12.400	1.430	5.390	1.060	52,4	793	123	713	139	427	67,9	452	68,8	78.730	24,63
P-93	148	2.370	3.930	7.770	889	3.480	681	32,3	509	78	439	85,7	263	41,7	278	42,5	47.420	19,49
P-94	178	2.120	2.980	6.090	683	2.650	541	31,5	448	64	379	74,6	226	34,5	224	33,3	33.770	12,09
P-95	447	6.464	11.100	22.200	2.460	9.490	1.840	77,2	1.350	188	1.080	210	627	99	664	103	160.600	26,38
P-96	217	3.851	5.430	11.200	1.270	4.920	974	46,4	746	116	679	133	404	65,7	432	64,7	72.000	16,83
P-97	129	1.967	2.890	5.860	662	2.600	512	25,9	402	60,6	354	69,3	211	35,1	232	35,4	40.680	10,01
P-98	242	3.856	6.950	13.800	1.570	5.940	1.150	50,4	832	119	670	130	395	61,6	419	64,2	94.810	25,15
P-99	186	2.205	3.580	8.160	825	3.190	620	28,7	479	69,1	393	75,5	229	36,8	248	37,9	50.100	12,24

Element	Sc	Y	La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Zr	TiO ₂
Einheit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
Probe																		
P-101	68	1.707	2.420	4.920	561	2.140	411	23,4	340	49,8	291	59,1	188	30,7	204	32,3	55.760	14,66
P-102	62	1.022	1.350	2.730	315	1.200	233	14,2	182	29,1	175	37,7	124	21,2	151	24,2	52.920	18,46
P-103	68	1.174	1.700	3.770	397	1.510	295	16,7	230	34,7	211	42,9	137	22,4	161	25,1	43.540	21,54
P-104	83	1.197	1.500	3.790	346	1.300	249	16,3	211	32,5	199	40,6	131	21,2	152	25,1	54.390	33,96
P-105	130	3.018	6.750	13.600	1.510	5.610	1.030	40,1	716	94,2	522	97,3	305	48,5	338	52,9	122.300	31,52
P-106	151	3.236	7.680	15.600	1.730	6.390	1.180	45,6	827	111	594	111	332	53,6	371	57,1	113.400	38,13
P-107	114	3.381	6.260	12.400	1.420	5.270	987	45,8	711	101	554	107	334	53,9	372	58,1	134.500	22,58
P-108	200	3.131	6.300	12.400	1.420	5.340	993	46,5	716	96,9	534	104	320	51,6	352	54,9	109.500	31,77
P-109	177	2.531	3.610	7.350	851	3.360	688	61,3	539	77,9	446	87,4	264	41,3	279	42	51.630	52,42

Anhang B

Tab. B-1: Tabellarische Aufstellung der mittleren mineralogischen Zusammensetzung aller untersuchten Schwermineralfraktionen (M.-%), gegliedert nach Fraktionen, Stratigraphie und Mineral-Gruppen.

Sand-Fraktionen Stratigraphie	sm	kms	qp, SG	ko/l	bEs	kro	*: Mittl. Abtrenngrad (%);
Ν	27	31	12	12	12	14	Mittelwert (%)
Leichtminerale	14,4	19,7	14,7	23,6	22,5	17,4	18,7
Schwerminerale	85,6	80,3	85,3	76,4	77,5	82,6	81,3 *
Summe	100,0	100,0	100,0	100,0	100,0	100,0	100,0
Davon:							
SEE-Minerale	46,7	32,5	24,0	18,7	13,8	33,8	28,3
Ti-Minerale	33,9	35,6	21,5	27,7	26,9	36,9	30,4
Fe-Minerale	4,0	5,2	10,7	15,0	35,1	5,9	12,7
Rest	15,4	26,7	43,8	66,7	24,2	23,4	33,4
Summe	100,0	100,0	100,0	100,0	100,0	100,0	100,0

Schluff-Fraktionen Stratigraphie	sm	kms	qp, SG	ko/l	bEs	kro	*: Mittl. Abtrenngrad (%);
Ν	14	12	12	11	9	13	Mittelwert (%)
Leichtminerale	10,5	13,5	18,0	16,2	15,2	14,0	14,6
Schwerminerale	89,5	86,5	82,0	83,8	84,8	86,0	85,4 *
Summe	100,0	100,0	100,0	100,0	100,0	100,0	100,0
Davon:							
SEE-Minerale	46,5	42,0	33,8	28,5	17,3	31,3	33,3
Ti-Minerale	37,6	19,6	20,9	31,3	32,7	34,7	29,5
Fe-Minerale	5,3	9,9	11,6	19,8	33,3	18,0	16,3
Rest	10,5	28,5	33,7	20,4	16,7	16,0	21,0
Summe	100,0	100,0	100,0	100,0	100,0	100,0	100,0

Leichtminerale: Quarz, Feldspäte, Glimmer (Biotit), Tonminerale (Kaolinit), Calcit.

Schwerminerale (alle mit Dichte > $3,0 \text{ g/cm}^3$):

- SEE-Minerale: Zirkon, Epidot (Allanit), Monazit, Apatit, Xenotim.
- Titan-(Ti)-Minerale: Anatas, Rutil.
- Eisen-(Fe)-Minerale: Goethit, Hämatit.
- Rest: Granat, Turmalin, Baryt, Mn-Oxide sowie "mitgewonnene" Leichtminerale.

Anhang C

Tab. C-1: Ausbeute an SEE- sowie Zr- und Ti- Oxiden für Einzelproben aus Buntsandstein (pro 100.000 t Sandrohstoff).

Probe-Nr.	LREE-Oxide	HREE-Oxide	Zr-Oxid	Ti-Oxid
	(kg)	(kg)	(kg)	(kg)
P-1	1.258	154	2.620	10.174
P-2	1.471	223	3.510	11.133
P-4	961	160	2.780	8.544
P-5	1.287	185	3.680	10.587
P-6	1.384	277	5.460	10.631
P-7	1.716	308	6.734	13.737
P-8	1.746	295	19.915	15.732
P-10	1.051	148	3.200	13.246
P-11	1.198	169	2.672	8.124
P-12	407	71	2.162	4.363
P-13	3.610	431	14.460	23.606
P-15	4.671	528	24.760	38.160
P-16	5.067	621	12.254	41.168
P-17	2.156	248	6.066	12.725
P-27	3.660	392	6.856	18.622
P-28	4.052	438	6.873	19.478
P-29	3.662	407	7.006	20.331
P-32	3.971	428	15.130	29.766
P-33	2.772	298	9.988	17.112
P-34	4.582	446	22.502	33.781
P-35	3.576	354	19.652	26.024
P-36	4.096	388	23.246	21.205
P-45	2.015	202	8.605	20.316
P-46	4.761	408	18.896	48.441
P-47	4.111	411	11.268	39.470
P-48	8.657	794	24.539	127.504
P-49	1.011	114	3.006	10.597
MIN	407	71	2.162	4.363
MAX	8.657	794	24.760	127.504
MW	2.923	330	10.661	24.244
unteres Qu	1.336	194	3.595	10.882
oberes Qu	4.074	420	17.013	27.895
Median	2.772	308	7.006	18.622
Anzahl	27	27	27	27

Anmerkung:

MIN	Minimalwert,
MAX	Maximalwert,
MW	arithmetischer Mittelwert,
unteres Qu	25 % Quartil,

oberes Qu Median Anzahl

Tab. C-2: Ausbeute an SEE- sowie Zr- und Ti- Oxiden für Einzelproben aus Sandsteinkeuper (pro 100.000 t Sandrohstoff).

Probe-Nr.	LREE-Oxide	HREE-Oxide	Zr-Oxid	Ti-Oxid
	(kg)	(kg)	(kg)	(kg)
P-19	4.641	514	10.020	25.415
P-20	5.929	708	13.926	52.503
P-21	3.540	388	5.711	23.026
P-22	16.348	1.933	75.957	88.726
P-23	7.078	906	41.565	46.156
P-24	1.498	167	1.893	12.021
P-25	1.482	166	2.741	18.278
P-26	3.645	441	5.292	28.504
P-37	3.368	337	676	15.389
P-38	4.475	462	4.916	11.482
P-39	1.367	137	1.678	5.607
P-40	2.388	239	2.932	9.795
P-41	6.158	618	13.427	32.292
P-42	814	94	1.411	11.973
P-43	5.714	613	11.653	29.833
P-50	6.855	829	5.476	39.608
P-51	9.281	1.040	5.633	36.926
P-61	1.660	180	2.086	9.403
P-62	3.475	365	6.966	20.149
P-68	2.083	224	3.797	10.103
P-74	9.043	859	22.777	49.638
P-77	2.829	274	3.782	13.454
P-78	2.133	208	2.708	8.078
P-82	2.554	249	1.902	13.977
P-83	606	61	640	4.155
P-84	2.155	213	2.595	10.851
P-85	1.807	171	2.122	6.808
P-86	1.706	158	1.763	10.961
P-87	1.555	145	1.716	9.818
P-90	2.645	317	7.538	33.254
P-91	11.261	1.081	28.499	59.906
P-110	2.507	262	3.376	17.133
MIN	606	61	640	4.155
MAX	16.348	1.933	75.957	88.726
MW	4.144	449	9.287	23.913
unteres Qu	1.782	178	2.040	10.664
oberes Qu	5.768	614	8.158	32.532
Median	2.737	295	3.789	16.261
Anzahl	32	32	32	32

Anmerkung:

MIN	Minimalwert,	oberes Qu	75 % Quartil,
MAX	Maximalwert,	Median	50 % Perzentil,
MW	arithmetischer Mittelwert,	Anzahl	Anzahl Proben.
unteres Qu	25 % Quartil,		

Probe-Nr.	LREE-Oxide	HREE-Oxide	Zr-Oxid	Ti-Oxid
	(kg)	(kg)	(kg)	(kg)
P-63	10.697	1.102	24.311	41.431
P-64	2.151	239	4.512	14.092
P-65	2.267	223	3.542	12.126
P-66	3.120	317	2.939	9.719
P-67	2.752	267	3.670	12.867
P-69	4.093	412	7.154	18.412
P-70	9.333	886	14.345	33.259
P-71	10.084	901	6.054	22.423
P-72	8.363	764	12.637	27.189
P-73	11.681	1.155	30.683	76.868
P-75	4.297	462	4.984	10.173
P-76	4.264	409	8.776	17.251
MIN	2.151	223	2.939	9.719
MAX	11.681	1.155	30.683	76.868
MW	6.092	595	10.301	24.651
unteres Qu	3.028	305	4.302	12.682
oberes Qu	9.521	890	13.064	28.707
Median	4.281	437	6.604	17.832
Anzahl	12	12	12	12

Tab. C-3: Ausbeute an SEE- sowie Zr- und Ti- Oxiden für Einzelproben aus quartärzeitlich umgelagertem Sandsteinkeuper (pro 100.000 t Sandrohstoff).

Anmerkung:

MIN	Minimalwert,
MAX	Maximalwert,
MW	arithmetischer Mittelwert,
unteres Qu	25 % Quartil,

oberes Qu Median Anzahl

Tab.	C-4:	Ausbeute	an	SEE-	sowie	Zr-	und	Ti-	Oxiden	für	Einzelproben	aus	Rhätolias	(pro	100.000 t	Sandroh-	-
stoff).																

Probe-Nr.	LREE-Oxide	HREE-Oxide	Zr-Oxid	Ti-Oxid
	(kg)	(kg)	(kg)	(kg)
P-44	2.944	354	5.523	15.332
P-79	12.325	1.440	25.366	61.949
P-80	4.253	458	7.995	15.614
P-81	1.409	183	4.608	14.543
P-92	4.461	526	8.694	45.288
P-93	3.270	396	5.747	34.407
P-94	5.428	666	9.549	42.553
P-95	22.551	2.285	40.600	76.981
P-96	6.892	862	13.517	47.490
P-97	4.476	531	8.958	27.609
P-98	7.338	840	16.267	45.091
P-99	11.828	1.271	23.518	68.882
MIN	1.409	183	4.608	14.543
MAX	22.551	2.285	40.600	76.981
MW	7.265	818	14.195	41.312
unteres Qu	4.008	443	7.433	24.610
oberes Qu	8.460	964	18.080	51.105
Median	4.952	598	9.253	43.822
Anzahl	12	12	12	12

Anmerkung:

MIN	Minimalwert,
MAX	Maximalwert,
MW	arithmetischer Mittelwert,
unteres Qu	25 % Quartil,

oberes Qu Median Anzahl

Probe-Nr.	LREE-Oxide	xide HREE-Oxide Zr-Oxid		Ti-Oxid	
	(kg)	(kg)	(kg)	(kg)	
P-52	10.829	1.481	69.435	328.034	
P-53	3.116	606	59.533	223.686	
P-54	710	191	17.751	83.725	
P-55	1.176	425	49.705	167.986	
P-56	2.070	477	39.509	238.816	
P-57	1.683	306	20.007	109.744	
P-58	2.638	635	59.170	187.021	
P-59	1.464	389	43.098	142.599	
P-60	1.815	428	50.565	146.086	
MIN	710	191	17.751	83.725	
MAX	10.829	1.481	69.435	328.034	
MW	2.833	549	45.419	180.855	
unteres Qu	1.464	389	39.509	142.599	
oberes Qu	2.638	606	59.170	223.686	
Median	1.815	428	49.705	167.986	
Anzahl	9	9	9	9	

Tab. C-5: Ausbeute an SEE- sowie Zr- und Ti- Oxiden für Einzelproben aus Dogger β (pro 100.000 t Sandrohstoff).

Anmerkung:

MIN	Minimalwert,
MAX	Maximalwert,
MW	arithmetischer Mittelwert,
unteres Qu	25 % Quartil,

oberes Qu Median Anzahl

Tab. C-6: Ausbeute an SEE- sowie Zr- und Ti- Oxiden für Einzelproben aus der Kreide (pro 100.000 t Sandrohstoff).

Probe-Nr.	LREE-Oxide	HREE-Oxide	Zr-Oxid	Ti-Oxid
	(kg)	(kg)	(kg)	(kg)
P-30	5.329	721	38.962	128.346
P-31	4.319	588	33.390	116.077
P-88	3.703	490	47.537	90.299
P-89	2.854	306	12.445	43.602
P-100	674	106	4.988	23.523
P-101	1.295	167	5.536	22.266
P-102	1.338	192	15.712	40.646
P-103	2.295	294	18.040	62.545
P-104	1.778	228	19.729	53.960
P-105	11.146	1.002	46.141	111.870
P-106	10.071	931	43.906	123.439
P-107	10.754	1.083	44.276	114.394
P-108	5.785	541	20.889	47.818
P-109	4.314	508	9.747	121.284
MIN	674	106	4.988	22.266
MAX	11.146	1.083	47.537	128.346
MW	4.689	511	25.807	78.576
unteres Qu	1.907	244	13.262	44.656
oberes Qu	5.671	687	42.670	115.656
Median	4.009	499	20.309	76.422
Anzahl	14	14	14	14

Anmerkung:

MIN	Minimalwert,
MAX	Maximalwert,
MW	arithmetischer Mittelwert,
unteres Qu	25 % Quartil,

oberes Qu Median Anzahl

Anhang D

Tab. D-1: Gesamte, erzielbare Oxid-Ausbeute (gerundet) für alle Gewinnungsstellen (jeweils angenommene Förderleistung 100.000 t/a pro Gewinnungsstelle), gegliedert nach stratigraphischer Einheit; SM: abtrennbare Schwermineral-Menge (t).

Gewinnungs-	LREE-Oxide	HREE-Oxide	Zr-Oxid	Ti-Oxid	SM
stelle	(t)	(t)	(t)	(t)	(t)
Buntsandstein	39,9	4,4	138,9	305,9	1.067
Sandsteinkeuper	77,8	8,3	174,2	453,7	1.649
Sandsteinkeuper, Quartär	47,3	4,6	85,3	203,4	1.113
Rhätolias	57,3	6,5	112,7	334,7	1.439
Dogger β	6,6	1,4	135,7	514,4	1.529
Kreide	40,0	4,2	188,1	619,0	1.688
Summe	268,9	29,4	834,9	2.431,1	8.485

Anhang E

Luftbildauswertung Mischelbach NE

Abb. 74: Sandgrube NE Mischelbach, Luftbild 2002.

Abb. 75: Sandgrube NE Mischelbach, Luftbild 2005.

Abb. 76: Sandgrube NE Mischelbach, Luftbild 2009.

Abb. 77: Sandgrube NE Mischelbach, Luftbild 2011.

Abb. 78: Sandgrube NE Mischelbach, Digitales Gelände Modell (5m).

Abb. 79: Sandgrube NE Mischelbach, TK25.

Abb. 80: Resultat (aktuelles Luftbild und Schlämmteichflächen (blau)).